zoukankan      html  css  js  c++  java
  • 大型跨境电商 JVM 调优经历

    前提:
    某大型跨境电商业务发展非常快,线上机器扩容也很频繁,但是对于线上机器的运行情况,特别是jvm内存的情况,一直没有一个统一的标准来给到各个应用服务的owner。经过618大促之后,和运维的同学讨论了下,希望将线上服务器的jvm参数标准化,可以以一个统一的方式给到各个应用,提升线上服务器的稳定性,同时减少大家都去调整jvm参数的时间。
    参考了之前在淘宝天猫工作的公司的经历:经过大家讨论,根据jdk的版本以及线上机器配置,确定了一个推荐的默认jvm模版:

    最终推荐的jvm模版:
    jdk版本 机器配置 建议jvm参数 备注
    jdk1.7 6V8G -server -Xms4g -Xmx4g -Xmn2g -Xss768k -XX:PermSize=512m -XX:MaxPermSize=512m -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSClassUnloadingEnabled -XX:+DisableExplicitGC -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=68 -verbose:gc -XX:+PrintGCDetails -Xloggc:{CATALINA_BASE}/logs/gc.log -XX:+PrintGCDateStamps -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath={CATALINA_BASE}/logs 前台
    jdk1.7 8V8G -server -Xms4g -Xmx4g -Xmn2g -Xss768k -XX:PermSize=512m -XX:MaxPermSize=512m -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSClassUnloadingEnabled -XX:+DisableExplicitGC -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=68 -verbose:gc -XX:+PrintGCDetails -Xloggc:{CATALINA_BASE}/logs/gc.log -XX:+PrintGCDateStamps -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath={CATALINA_BASE}/logs 前台
    jdk1.7 4V8G -server -Xms4g -Xmx4g -Xmn2g -Xss768k -XX:PermSize=512m -XX:MaxPermSize=512m -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSClassUnloadingEnabled -XX:+DisableExplicitGC -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=68 -verbose:gc -XX:+PrintGCDetails -Xloggc:{CATALINA_BASE}/logs/gc.log -XX:+PrintGCDateStamps -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath={CATALINA_BASE}/logs 前台
    jdk1.7 6V8G -server -Xms4g -Xmx4g -XX:MaxPermSize=512m
    -verbose:gc -XX:+PrintGCDetails -Xloggc{CATALINA_BASE}/logs/gc.log -XX:+PrintGCTimeStamps 后台


    某互联网(bat)公司的推荐配置:




    配置说明:
    1. 堆设置
    o -Xms:初始堆大小
    o -Xmx:最大堆大小
    o -XX:NewSize=n:设置年轻代大小
    o -XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
    o -XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
    o -XX:MaxPermSize=n:设置持久代大小
    2. 收集器设置
    o -XX:+UseSerialGC:设置串行收集器
    o -XX:+UseParallelGC:设置并行收集器
    o -XX:+UseParalledlOldGC:设置并行年老代收集器
    o -XX:+UseConcMarkSweepGC:设置并发收集器
    3. 垃圾回收统计信息
    -XX:+PrintGC
    -XX:+PrintGCDetails
    -XX:+PrintGCTimeStamps
    -Xloggc:filename
    "
    4. 并行收集器设置
    -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
    -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
    -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
    5. 并发收集器设置
    -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
    -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
    (4)

    参数解释:

    -Xms3072m -Xmx3072m
    针对JVM堆的设置,通过-Xms -Xmx限定其最小、最大值
    -Xmn1024m设置年轻代大小为1024m
    整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小(perm)。

    -Xss768k 设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

    -XX:PermSize=512m -XX:MaxPermSize=512m
    持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
    设置非堆内存初始值,默认是物理内存的1/64;由XX:MaxPermSize设置最大非堆内存的大小,默认是物理内存的1/4

    -XX:+UseConcMarkSweepGC
    CMS收集器也被称为短暂停顿并发收集器。它是对年老代进行垃圾收集的。CMS收集器通过多线程并发进行垃圾回收,尽量减少垃圾收集造成的停顿。CMS收集器对年轻代进行垃圾回收使用的算法和Parallel收集器一样。这个垃圾收集器适用于不能忍受长时间停顿要求快速响应的应用。

    -XX:+UseParNewGC对年轻代采用多线程并行回收,这样收得快;

    -XX:+CMSClassUnloadingEnabled
    如果你启用了CMSClassUnloadingEnabled ,垃圾回收会清理持久代,移除不再使用的classes。这个参数只有在 UseConcMarkSweepGC 也启用的情况下才有用。

    -XX:+DisableExplicitGC禁止System.gc(),免得程序员误调用gc方法影响性能;

    -XX:+UseCMSInitiatingOccupancyOnly
    标志来命令JVM不基于运行时收集的数据来启动CMS垃圾收集周期。而是,当该标志被开启时,JVM通过CMSInitiatingOccupancyFraction的值进行每一次CMS收集,而不仅仅是第一次。然而,请记住大多数情况下,JVM比我们自己能作出更好的垃圾收集决策。因此,只有当我们充足的理由(比如测试)并且对应用程序产生的对象的生命周期有深刻的认知时,才应该使用该标志。

    -XX:CMSInitiatingOccupancyFraction=68
    默认CMS是在tenured generation(年老代)占满68%的时候开始进行CMS收集,如果你的年老代增长不是那么快,并且希望降低CMS次数的话,可以适当调高此值;

    -XX:+UseParNewGC:对年轻代采用多线程并行回收,这样收得快;


    -XX:HeapDumpPath
    -XX:+PrintGCDetails
    -XX:+PrintGCTimeStamps
    -Xloggc:/usr/aaa/dump/heap_trace.txt
    上面的的参数打Heap Dump信息

    " -XX:+HeapDumpOnOutOfMemoryError
    此参数可以控制OutOfMemoryError时打印堆的信息


    大家可能注意到了,这里推荐采用cms方式进行垃圾回收;
    CMS是一种以获取最短回收停顿时间为目标的收集器,可以有效减少服务器停顿的时间;
    CMS的GC线程对CPU的占用率会比较高,但在多核的服务器上还是展现了优越的特性,目前也被部署在国内的各大电商网站上。所以这里强烈推荐!

    cms的概念:
    CMS收集器也被称为短暂停顿并发收集器。它是对年老代进行垃圾收集的。CMS收集器通过多线程并发进行垃圾回收,尽量减少垃圾收集造成的停顿。CMS收集器对年轻代进行垃圾回收使用的算法和Parallel收集器一样。这个垃圾收集器适用于不能忍受长时间停顿要求快速响应的应用。CMS采用了多种方式尽可能降低GC的暂停时间,减少用户程序停顿。停顿时间降低的同时牺牲了CPU吞吐量 。这是在停顿时间和性能间做出的取舍,可以简单理解为"空间(性能)"换时间。

    调整的节奏:
    由于怕影响线上应用,所以调整的步骤分三步:
    第一步:部分影响少量机器试点,对比未调整的机器,观察调整后的结果;
    第二步:调整部分应用的参数,进行压测,观察高并发压测之后的效果;
    第三步:调整部分核心应用的jvm参数,通过618大促来实际检验效果;
    目前618大促已经结果。正好做一个个总结。

    一:长期表现,
    第一个变化:fgc的次数减少,减少了大概一倍以上;
    mobile工程,调整前基本上一天1-2辆次,调整后基本上就是2-3天一次:



    online(另外一个工程):可以明显看到fgc的统计频率少了很多;





    第二个变化:fgc的时间减少








    原来一次fgc要将近500ms,现在只要100ms不到了。
    也证明了cms最大的好处就是减少fgc的停顿时间。

    二:压测及大促表现
    fgc的时间基本上是大大缩短,yanggc的时间变长,次数变化不大;
    数据来源:测试团队的压测总结
     

    xxxx-online4.server.org
    CMS

    xxxx-online1.server.org
    CMS

    xxxx-online34.server.org
    默认垃圾收集器

    说明

     

    fullgc次数

    1

    1

    1

     

    fullgc总时间

    343

    250

    1219

     

    默认垃圾收集器/CMS fullgc 时间

    3.55

    4.88

     

    CMS fullgc时间比默认垃圾收集器时间明显要少

    fullgc时间点

    2:48:36

    3:14:36

    5:30:36

     

    fullgc时使用率CPU%

    40%

    10%

    16%

     

    fullgc时的load Average

    1.19

    0.49

    1.21

     
             

    younggc总次数

    1094

    1098

    1078

     

    younggc总时间

    44093

    44632

    30387

     

    younggc平均时间

    40.30

    40.65

    28.19

     

    younggc最大时间

    1332

    1268

    928

     

    CMS/默认垃圾收集器(younggc总时间)

    1.45

    1.47

     

    CMS younggc时间比默认垃圾收集器耗时

    CMS/默认垃圾收集器(younggc平均时间)

    1.43

    1.44

     

    CMS younggc时间比默认垃圾收集器耗时

    CMS/默认垃圾收集器(younggc最大时间)

    1.44

    1.37

     

    CMS younggc时间比默认垃圾收集器最差情况要差

    <!--EndFragment-->

    三:关于哨兵上统计full gc的次数的解释,哨兵上
    我们可以安全的说:
    1. Full GC == Major GC指的是对老年代/永久代的stop the world的GC
    2. Full GC的次数 = 老年代GC时 stop the world的次数
    3. Full GC的时间 = 老年代GC时 stop the world的总时间
    4. CMS 不等于Full GC,我们可以看到CMS分为多个阶段,只有stop the world的阶段被计算到了Full GC的次数和时间,而和业务线程并发的GC的次数和时间则不被认为是Full GC

    Full GC的次数说的是stop the world的次数,所以一次CMS至少会让Full GC的次数+2,因为CMS Initial mark和remark都会stop the world,记做2次。而CMS可能失败再引发一次Full GC
    如果CMS并发GC过程中出现了concurrent mode failure的话那么接下来就会做一次mark-sweep-compact的full GC,这个是完全stop-the-world的。

    正是这个特征,使得CMS的每个并发GC周期总共会更新full GC计数器两次,initial mark与final re-mark各一次;如果出现concurrent mode failure,则接下来的full GC自己算一次。

    四:遇到的几个问题:
    问题一:堆栈溢出;
    -Xss256k这个参数调整了,远涛反馈可能会影响trace的调用。 报如下错误:
    Java.lang.StackOverflowError
    at net.sf.jsqlparser.util.deparser.ExpressionDeParser.visitBinaryExpression(ExpressionDeParser.java:278)
    at net.sf.jsqlparser.util.deparser.ExpressionDeParser.visit(ExpressionDeParser.java:246)
    at net.sf.jsqlparser.expression.operators.conditional.OrExpression.accept(OrExpression.java:37)
    at net.sf.jsqlparser.util.deparser.ExpressionDeParser.visitBinaryExpression(ExpressionDeParser.java:278)
    at net.sf.jsqlparser.util.deparser.ExpressionDeParser.visit(ExpressionDeParser.java:246)
    因为这个参数是设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。在相同物理内存下,减小这个值能生成更多的线程。
    所以今天去掉某台inventory机器的-Xss256k参数,看一下是不是这个导致的

    问题二:初始化标记阶段耗时过长:
    一般的建议是cms阶段两次STW的时间不超过200ms,如果是CMS Initial mark阶段导致的时间过长:
    在初始化标记阶段(CMS Initial mark),为了最大限度地减少STW的时间开销,我们可以使用:
    -XX:+CMSParallelInitialMarkEnabled
    开启初始标记过程中的并行化,进一步提升初始化标记效率;
    问题三:remark阶段stw的时间过长
    如下图:




    可以采用的方式是:
    在CMS GC前启动一次ygc,目的在于减少old gen对ygc gen的引用,降低remark时的开销-----一般CMS的GC耗时 80%都在remark阶段
    -XX:+CMSScavengeBeforeRemark
    jmap分析:




    问题四:nio框架占用DirectMemory导致的OutOfMemoryError
    处理方式:使用XX:+DisableExplicitGC
    增加DirectMemory的大小;
    1、DirectMemory不属于java堆内存、分配内存其实是调用操作系统的Os:malloc()函数。
    2、容量可通过-XX:MaxDirectMemorySize指定,如果不指定,则默认与Java堆的最大值(-Xmx指定)一样。注意 ibm jvm默认Direct Memory与-Xmx无直接关系。
    3、Direct Memory 内存的使用避免Java堆和Native堆中来回复制数据。从某些场景中提高性能。
    4、直接ByteBuffer对象会自动清理本机缓冲区,但这个过程只能作为Java堆GC的一部分来执行,因此它们不会自动响应施加在本机堆上的压力。
    5、GC仅在Java堆被填满,以至于无法为堆分配请求提供服务时发生,或者在Java应用程序中显示调用System.gc()函数来释放内存(一些NIO框架就是用这个方法释放占用的DirectMemory)。
    6、该区域使用不合理,也是会引起OutOfMemoryError。
    7、在需要频繁创建Buffer的场合,由于创建和销毁DirectBuffer的代价比较高昂,是不宜使用DirectBuffer的,但是如果能将DirectBuffer进行复用,那么 ,在读写频繁的情况下,它完全可以大幅改善性能。(对DirectBuffer的读写比普通Buffer快,但是对他的创建和销毁比普通Buffer慢)。

    转载于:https://my.oschina.net/yzbty32/blog/1832650

  • 相关阅读:
    股票数据可视化
    试下代码高亮
    【Spark亚太研究院系列丛书】Spark实战高手之路-第3章Spark架构设计与编程模型第3节:Spark架构设计(2)
    【Spark亚太研究院系列丛书】Spark实战高手之路-第3章Spark架构设计与编程模型第3节:Spark架构设计(1)
    【Spark亚太研究院系列丛书】Spark实战高手之路-第3章Spark架构设计与编程模型第2节:Spark架构设计(2)
    【Spark亚太研究院系列丛书】Spark实战高手之路-第3章Spark架构设计与编程模型第2节:Spark架构设计(1)
    【Spark亚太研究院系列丛书】Spark实战高手之路-第3章Spark架构设计与编程模型第1节:为什么Spark是大数据必然的现在和未来?(2)
    【Spark亚太研究院系列丛书】Spark实战高手之路-第3章Spark架构设计与编程模型第1节:为什么Spark是大数据必然的现在和未来?(1)
    【Spark亚太研究院系列丛书】Spark实战高手之路-第2章动手实战Scala第3小节:动手实战Scala函数式编程(2)
    【Spark亚太研究院系列丛书】Spark实战高手之路-第2章动手实战Scala第3小节:动手实战Scala函数式编程(1)
  • 原文地址:https://www.cnblogs.com/twodog/p/12136665.html
Copyright © 2011-2022 走看看