zoukankan      html  css  js  c++  java
  • FluxInterval实例及解析

    本文主要研究下FluxInterval的机制

    FluxInterval

    reactor-core-3.1.3.RELEASE-sources.jar!/reactor/core/publisher/FluxInterval.java

    /**
     * Periodically emits an ever increasing long value either via a ScheduledExecutorService
     * or a custom async callback function
     * @see <a href="https://github.com/reactor/reactive-streams-commons">Reactive-Streams-Commons</a>
     */
    final class FluxInterval extends Flux<Long> {
    
    	final Scheduler timedScheduler;
    	
    	final long initialDelay;
    	
    	final long period;
    	
    	final TimeUnit unit;
    
    	FluxInterval(
    			long initialDelay, 
    			long period, 
    			TimeUnit unit, 
    			Scheduler timedScheduler) {
    		if (period < 0L) {
    			throw new IllegalArgumentException("period >= 0 required but it was " + period);
    		}
    		this.initialDelay = initialDelay;
    		this.period = period;
    		this.unit = Objects.requireNonNull(unit, "unit");
    		this.timedScheduler = Objects.requireNonNull(timedScheduler, "timedScheduler");
    	}
    	
    	@Override
    	public void subscribe(CoreSubscriber<? super Long> actual) {
    		Worker w = timedScheduler.createWorker();
    
    		IntervalRunnable r = new IntervalRunnable(actual, w);
    
    		actual.onSubscribe(r);
    
    		try {
    			w.schedulePeriodically(r, initialDelay, period, unit);
    		}
    		catch (RejectedExecutionException ree) {
    			if (!r.cancelled) {
    				actual.onError(Operators.onRejectedExecution(ree, r, null, null,
    						actual.currentContext()));
    			}
    		}
    	}
    }	
    

    可以看到这里利用Scheduler来创建一个定时调度任务IntervalRunnable

    IntervalRunnable

    	static final class IntervalRunnable implements Runnable, Subscription,
    	                                               InnerProducer<Long> {
    		final CoreSubscriber<? super Long> actual;
    		
    		final Worker worker;
    		
    		volatile long requested;
    		static final AtomicLongFieldUpdater<IntervalRunnable> REQUESTED =
    				AtomicLongFieldUpdater.newUpdater(IntervalRunnable.class, "requested");
    		
    		long count;
    		
    		volatile boolean cancelled;
    
    		IntervalRunnable(CoreSubscriber<? super Long> actual, Worker worker) {
    			this.actual = actual;
    			this.worker = worker;
    		}
    
    		@Override
    		public CoreSubscriber<? super Long> actual() {
    			return actual;
    		}
    
    		@Override
    		@Nullable
    		public Object scanUnsafe(Attr key) {
    			if (key == Attr.CANCELLED) return cancelled;
    
    			return InnerProducer.super.scanUnsafe(key);
    		}
    
    		@Override
    		public void run() {
    			if (!cancelled) {
    				if (requested != 0L) {
    					actual.onNext(count++);
    					if (requested != Long.MAX_VALUE) {
    						REQUESTED.decrementAndGet(this);
    					}
    				} else {
    					cancel();
    					
    					actual.onError(Exceptions.failWithOverflow("Could not emit tick " + count + " due to lack of requests" +
    							" (interval doesn't support small downstream requests that replenish slower than the ticks)"));
    				}
    			}
    		}
    		
    		@Override
    		public void request(long n) {
    			if (Operators.validate(n)) {
    				Operators.addCap(REQUESTED, this, n);
    			}
    		}
    		
    		@Override
    		public void cancel() {
    			if (!cancelled) {
    				cancelled = true;
    				worker.dispose();
    			}
    		}
    	}
    

    这里重点看requested变量,run方法每次判断requested,如果requested为0则销毁worker,否则则每次发射一个元素计数就减一 而subscriber如果有继续request的话,则会增加requested的值

    实例1

        public static void main(String[] args) throws InterruptedException {
            Flux<Long> flux = Flux.interval(Duration.ofMillis(1))
                    .doOnNext(e -> {
                        System.out.println(e);
                    }).doOnError(e -> e.printStackTrace());
    
            System.out.println("begin to subscribe");
            flux.subscribe(e -> {
                System.out.println(e);
                try {
                    TimeUnit.MINUTES.sleep(30);
                } catch (InterruptedException e1) {
                    e1.printStackTrace();
                }
            });
            TimeUnit.MINUTES.sleep(30);
        }
    

    这个例子requested是Long.MAX_VALUE,但是由于subscribe的线程跟运行interval的线程一样,由于里头执行了sleep操作也导致interval的调度也跟着阻塞住了。

    实例2

        public static void main(String[] args) throws InterruptedException {
            Flux<Long> flux = Flux.interval(Duration.ofMillis(1))
                    .doOnNext(e -> {
                        System.out.println(e);
                    })
                    //NOTE 这里request prefetch=256个
                    .publishOn(Schedulers.newElastic("publish-thread"))
                    .doOnError(e -> e.printStackTrace());
    
            System.out.println("begin to subscribe");
            AtomicInteger count = new AtomicInteger(0);
            //NOTE 得有subscribe才能触发request
            flux.subscribe(e -> {
                LOGGER.info("receive:{}",e);
                try {
                    //NOTE 使用publishOn将subscribe与interval的线程分开
                    if(count.get() == 0){
                        TimeUnit.MINUTES.sleep(2);
                    }
                    count.incrementAndGet();
                } catch (InterruptedException e1) {
                    e1.printStackTrace();
                }
            });
            TimeUnit.MINUTES.sleep(30);
        }
    

    使用publishOn将subscriber线程与interval线程隔离,使其sleep不阻塞interval 这里publishOn隐含了一个prefetch参数,默认是Queues.SMALL_BUFFER_SIZE即Math.max(16,Integer.parseInt(System.getProperty("reactor.bufferSize.small", "256")));

    	public final Flux<T> publishOn(Scheduler scheduler) {
    		return publishOn(scheduler, Queues.SMALL_BUFFER_SIZE);
    	}
    
    	final Flux<T> publishOn(Scheduler scheduler, boolean delayError, int prefetch, int lowTide) {
    		if (this instanceof Callable) {
    			if (this instanceof Fuseable.ScalarCallable) {
    				@SuppressWarnings("unchecked")
    				Fuseable.ScalarCallable<T> s = (Fuseable.ScalarCallable<T>) this;
    				try {
    					return onAssembly(new FluxSubscribeOnValue<>(s.call(), scheduler));
    				}
    				catch (Exception e) {
    					//leave FluxSubscribeOnCallable defer exception call
    				}
    			}
    			@SuppressWarnings("unchecked")
    			Callable<T> c = (Callable<T>)this;
    			return onAssembly(new FluxSubscribeOnCallable<>(c, scheduler));
    		}
    
    		return onAssembly(new FluxPublishOn<>(this, scheduler, delayError, prefetch, lowTide, Queues.get(prefetch)));
    	}
    

    这里使用Queues.get(prefetch)创建一个间接的队列来盛放元素

    这个实例最后输出

    //......
    21:06:03.108 [publish-thread-2] INFO com.example.demo.FluxTest - receive:254
    21:06:03.108 [publish-thread-2] INFO com.example.demo.FluxTest - receive:255
    reactor.core.Exceptions$OverflowException: Could not emit tick 256 due to lack of requests (interval doesn't support small downstream requests that replenish slower than the ticks)
    	at reactor.core.Exceptions.failWithOverflow(Exceptions.java:215)
    	at reactor.core.publisher.FluxInterval$IntervalRunnable.run(FluxInterval.java:121)
    	at reactor.core.scheduler.PeriodicWorkerTask.call(PeriodicWorkerTask.java:59)
    	at reactor.core.scheduler.PeriodicWorkerTask.run(PeriodicWorkerTask.java:73)
    	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    	at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)
    	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180)
    	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)
    	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    	at java.lang.Thread.run(Thread.java:745)
    

    由于第一次request默认是256,之后在发射256个元素之后,subscriber没有跟上,导致interval的worker被cancel掉了,于是后续消费完256个元素之后,紧挨着就是OverflowException这个异常

    小结

    reactor本身并不依赖线程,只有interval,delayElements等方法才会创建线程。而reactor本身是观察者设计模式的扩展,采用push+backpressure模式,一开始调用subscribe方法就触发request N请求推送数据,之后publisher就onNext推送数据,直到complete或cancel。实例1是因为线程阻塞导致interval的onNext阻塞,实例2是interval被cancel掉导致flux关闭。

    转载于:https://my.oschina.net/go4it/blog/1622063

  • 相关阅读:
    QT自定义控件插件化简要概述
    wildfly9 配置SSL单向认证/https
    wildfly-9.0.2 web项目部署详细步骤
    SQL Server 2008 数据库日志文件丢失处理方法
    win7 64位系统 pl/sql 无法解析指定的连接标识符解决办法
    mybatis 应用参考
    去除浏览器下jquey easyui datagrid、combotree 缓存问题
    java 页面url传值中文乱码的解决方法
    jasperreports-5.6 + jaspersoftstudio-5.6 生成pdf 文件中文无法正常显示问题
    HTML5实现在线抓拍
  • 原文地址:https://www.cnblogs.com/twodog/p/12137487.html
Copyright © 2011-2022 走看看