zoukankan      html  css  js  c++  java
  • POJ1651:Multiplication Puzzle(区间dp)

    Multiplication Puzzle
    Time Limit: 1000MS
    Memory Limit: 65536K
    Total Submissions: 9419
    Accepted: 5850

    Description

    The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row. 

    The goal is to take cards in such order as to minimize the total number of scored points. 

    For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring 
    10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

    If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be 
    1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

    Input

    The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

    Output

    Output must contain a single integer - the minimal score.

    Sample Input

    6
    10 1 50 50 20 5
    

    Sample Output

    3650

    # include <stdio.h>
    # include <string.h>
    int min(int a, int b)
    {
        return a<b?a:b;
    }
    int main()
    {
        int n, len, i, k, imin1, imin2, imin, a[102],dp[102][102];
        while(scanf("%d",&n) != EOF)
        {
        memset(dp,0 ,sizeof(dp));
        for(i=0; i<n; ++i)
            scanf("%d",&a[i]);
        for(i=1; i<n-1; ++i)
            dp[i][i] = a[i]*a[i-1]*a[i+1];//初始化
        for(len=1; len<n; ++len)//枚举区间
            for(i=1; i+len<n-1; ++i)
            {
                //枚举最后消去的点
                imin1 = dp[i+1][i+len]+a[i]*a[i-1]*a[i+len+1];//(为首点)
                imin2 = dp[i][i+len-1]+a[i+len]*a[i-1]*a[i+len+1];//(为尾点)
                imin = min(imin1, imin2);
                for(k=i+1; k<i+len; ++k)//(为中间点)
                    imin = min(imin, dp[i][k-1]+dp[k+1][i+len]+a[k]*a[i-1]*a[i+len+1]);
                dp[i][i+len] = imin;
            }
            printf("%d
    ",dp[1][n-2]);
        }
        return 0;
    }
    


    转载于:https://www.cnblogs.com/junior19/p/6730110.html

  • 相关阅读:
    模块和包
    异常处理
    re模块下的的常用方法
    lambda匿名函数sorted排序函数filter过滤函数map映射函数
    内置函数
    生成器函数,迭代器
    网站架构伸缩性概论
    网站架构高可用小结
    Apache的三种工作模式
    HTTP协议
  • 原文地址:https://www.cnblogs.com/twodog/p/12141481.html
Copyright © 2011-2022 走看看