拖了很久的shiro分析
漏洞概述
Apache Shiro <= 1.2.4 版本中,加密的用户信息序列化后存储在Cookie的rememberMe字段中,攻击者可以使用Shiro的AES加密算法的默认密钥来构造恶意的Cookie rememberMe值,发送到Shiro服务端之后会先后进行Base64解码、AES解密、readObject()反序列化,从而触发Java原生反序列化漏洞,进而实现RCE。
该漏洞的根源在于硬编码Key。
漏洞复现
使用shiroattack工具
Dnslog接收到请求
执行命令
漏洞分析
远程调试
用idea连vulhub的docker环境来进行调试
首先进入容器
docker exec -it 34db756dfcfc /bin/bash
可以看到是用jar包起的环境,把文件拷贝出来(也可以docker-compose up -d
之后使用docker ps --no-trunc
来查看容器默认的启动命令)
docker cp 34db756dfcfc:/shirodemo-1.0-SNAPSHOT.jar ~/
然后把jar包解压了之后用idea打开
libraries里导入
在module中添加BOOT_INF
这个目录
另外还需要改一下dockerfile
idea远程调试docker
需要增加一组端口供调试用,这里我们用idea默认的5005
vulhub的shiro环境是java -jar xxx.jar的形式运行的,那么添加对jar程序启动的调试命令即可,在启动docker时用自定义的COMMAND替换默认的COMMAND
version: '2'
services:
web:
image: vulhub/shiro:1.2.4
ports:
- "8080:8080"
- "5005:5005"
command: java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005 -jar /shirodemo-1.0-SNAPSHOT.jar
然后配置好remote
下好断点,输入登录账户密码测试,看到以下界面说明成功了
原理分析
从官方的 issue 上来看,存在几个重要的点:
- rememberMe cookie
- CookieRememberMeManager.java
- Base64
- AES
- 加密密钥硬编码
- Java serialization
首先正常登录
返回的cookie值中的rememberme值如下:
o5NA+QAjgJpe6uKkIJ1li/WLqOAR2KfLIY3BzwfAUFbbkBSEfs3/259i4Qc2jq6lxUpLabYK2c0oR4faB3l8m0GDhzMvVYjFOR2TPKRtQmqlUAdaiJT06biAC56EMu6UbBJAujAgP1msHuJYkV1fDuhdLN5wGK+IlEpr1Xf+aa6oNkPqBkRG7+B/3bXQNTqmLFlarZUWxB6TwZyshplhx0ckyIfc0qJuf/f5Tt60gK/D28JUI93Gp3vGi/P7UUiwv2Qyzpz4hXZSUocGlC73qE+62ZvQ1ryzVRjpfTkG4Hat6sst04wbpFwdUSJxh6t4FLJ2i9bs5eIm/1UJpVHP9Eia5WaAShQa45qr5yIMA+q1rYxtz0WufvOi67fpqY3qi8LQ/ZnGwXUY+o6dLu2qmqHwTXbRTRKP4G5d3e5SA9FNvXUhYWRhcwo2zJ2lS2JK/D6S0u3HAak04+3wpbZm0UCJxafXlaFPUDhmiXBtIULcEELqBOaqLr1n7LV+F1Cl7kYNU6GozLVPvNlqW5UtLA==
跟一下登录生成cookie的过程
生成cookie
shiro会提供rememberme功能,可以通过cookie记录登录用户,从而记录登录用户的身份认证信息,即下次无需登录即可访问。而其中对rememberme的cookie做了加密处理,漏洞主要原因是加密的AES密钥是硬编码在文件中的,那么对于AES加密算法我们已知密钥,并且IV为cookie进行base64解码后的前16个字节,因此我们可以构造任意的可控序列化payload。
处理rememberme的cookie的类为org.apache.shiro.web.mgt.CookieRememberMeManager
它继承自org.apache.shiro.mgt.AbstractRememberMeManager
,其中在AbstractRememberMeManager
中定义了加密cookie所需要使用的密钥,当我们成功登录时,如果勾选了rememberme选项,那么此时将进入onSuccessfulLogin方法
之后进入serialize
,对登录认证信息进行序列化
然后进行加密
org.apache.shiro.mgt.AbstractRememberMeManager
中的encrypt方法如下
protected byte[] encrypt(byte[] serialized) {
byte[] value = serialized;
CipherService cipherService = getCipherService();
if (cipherService != null) {
ByteSource byteSource = cipherService.encrypt(serialized, getEncryptionCipherKey());
value = byteSource.getBytes();
}
return value;
}
ByteSource byteSource = cipherService.encrypt(serialized, getEncryptionCipherKey());
调用的即为AES算法
可以看到使用CBC模式的AES加密算法,其中Padding规则是PKCS5。
具体实现在org/apache/shiro/crypto/JcaCipherService.java
中
private ByteSource encrypt(byte[] plaintext, byte[] key, byte[] iv, boolean prependIv) throws CryptoException {
final int MODE = javax.crypto.Cipher.ENCRYPT_MODE;
byte[] output;
if (prependIv && iv != null && iv.length > 0) {
byte[] encrypted = crypt(plaintext, key, iv, MODE);
output = new byte[iv.length + encrypted.length];
//now copy the iv bytes + encrypted bytes into one output array:
// iv bytes:
System.arraycopy(iv, 0, output, 0, iv.length);
// + encrypted bytes:
System.arraycopy(encrypted, 0, output, iv.length, encrypted.length);
} else {
output = crypt(plaintext, key, iv, MODE);
}
if (log.isTraceEnabled()) {
log.trace("Incoming plaintext of size " + (plaintext != null ? plaintext.length : 0) + ". Ciphertext " +
"byte array is size " + (output != null ? output.length : 0));
}
return ByteSource.Util.bytes(output);
}
IV(初始化向量)是随机生成的,将IV放在crtpt()加密的数据之前然后返回
加密结束后,在org/apache/shiro/web/mgt/CookieRememberMeManager.java的rememberSerializedIdentity
方法中进行base64编码,并通过response返回
这里的byte是前16位随机的IV+AES密文,然后经过base64编码
解析cookie
org/apache/shiro/web/mgt/CookieRememberMeManager.java
中会将传递的base64字符串进行解码后放到字节数组中,因为java的序列化字符串即为字节数组
byte[] decoded = Base64.decode(base64);
然后进入解密流程
先解密后进行反序列化
AES是对称加密,加解密密钥都是相同的,并且shiro都是将密钥硬编码
public void setCipherKey(byte[] cipherKey) {
//Since this method should only be used in symmetric ciphers
//(where the enc and dec keys are the same), set it on both:
setEncryptionCipherKey(cipherKey);
setDecryptionCipherKey(cipherKey);
}
public AbstractRememberMeManager() {
this.serializer = new DefaultSerializer<PrincipalCollection>();
this.cipherService = new AesCipherService();
setCipherKey(DEFAULT_CIPHER_KEY_BYTES);
}
在org/apache/shiro/crypto/JcaCipherService.java
的decrypt()方法中进行解密从cookie中取出iv与加密的序列化数据
调用crypt方法利用密文,key,iv进行解密
解密完成后进入反序列化,看上面的public AbstractRememberMeManager()
这里用的是默认反序列化类
public T deserialize(byte[] serialized) throws SerializationException {
if (serialized == null) {
String msg = "argument cannot be null.";
throw new IllegalArgumentException(msg);
}
ByteArrayInputStream bais = new ByteArrayInputStream(serialized);
BufferedInputStream bis = new BufferedInputStream(bais);
try {
ObjectInputStream ois = new ClassResolvingObjectInputStream(bis);
@SuppressWarnings({"unchecked"})
T deserialized = (T) ois.readObject();
ois.close();
return deserialized;
} catch (Exception e) {
String msg = "Unable to deserialze argument byte array.";
throw new SerializationException(msg, e);
}
}
readobject()
触发反序列化
至此,Shiro对Cookie的rememberMe的处理流程已整体调试分析结束。
漏洞修复
Apache Shiro 1.2.5版本的源码,修复方法就是将使用默认Key加密改为生成随机的Key加密:https://github.com/apache/shiro/commit/4d5bb000a7f3c02d8960b32e694a565c95976848
参考
https://ares-x.com/2020/04/20/IDEA远程调试Docker中程序的方法/
https://paper.seebug.org/shiro-rememberme-1-2-4/
https://xz.aliyun.com/t/6493?accounttraceid=052d6170a05a4736a42c47de607a2766sdut#toc-6
https://www.mi1k7ea.com/2020/10/03/浅析Shiro-rememberMe反序列化漏洞(Shiro550)/