zoukankan      html  css  js  c++  java
  • LSTM代码

    tensorflow的关于LSTM的代码,经过反复的调试和修改,终于运行成功了,可以把训练过程的结果保存起来,然后预测的时候直接取出来。花了很长时间才把官网上的代码调试成功,里面的坑有很多需要填补,还有源代码,都需要认真解读,关于tensorflow的高级结构,比如队列和多线程,也涉及到了。

    import time
    import numpy as np
    import tensorflow as tf
    import tensorflow.models.rnn.ptb.reader as reader
    
    # flags = tf.flags
    # logging = tf.logging
    # flags.DEFINE_string("save_path", None,
    #                    "Model output directory.")
    # flags.DEFINE_bool("use_fp16", False,
    #                  "Train using 16-bit floats instead of 32bit floats")
    # FLAGS = flags.FLAGS
    # def data_type():
    #  return tf.float16 if FLAGS.use_fp16 else tf.float32
    class PTBInput(object):
        """The input data."""
    
        def __init__(self, config, data, name=None):
            self.batch_size = batch_size = config.batch_size
            self.num_steps = num_steps = config.num_steps
            self.epoch_size = ((len(data) // batch_size)) // num_steps
            self.x, self.y = input,target = reader.ptb_producer(data,batch_size,num_steps)
            self.input_data = tf.placeholder(shape=[batch_size,num_steps],dtype=tf.int32)
            self.targets = tf.placeholder(shape=[batch_size,num_steps],dtype=tf.int32)
    
    class PTBModel(object):
        """The PTB model."""
    
        def __init__(self, is_training, config, input_):
            self._input = input_
            batch_size = input_.batch_size
            num_steps = input_.num_steps
            size = config.hidden_size
            vocab_size = config.vocab_size
    
            # Slightly better results can be obtained with forget gate biases
            # initialized to 1 but the hyperparameters of the model would need to be
            # different than reported in the paper.
            def lstm_cell():
                return tf.nn.rnn_cell.BasicLSTMCell(
                    size, forget_bias=0.0, state_is_tuple=True)
    
            attn_cell = lstm_cell
            if is_training and config.keep_prob < 1:
                def attn_cell():
                    return tf.nn.rnn_cell.DropoutWrapper(
                        lstm_cell(), output_keep_prob=config.keep_prob)
            cell = tf.nn.rnn_cell.MultiRNNCell(
                [attn_cell() for _ in range(config.num_layers)], state_is_tuple=True)
            self._initial_state = cell.zero_state(batch_size, tf.float32)
            print('initial_state:',self._initial_state)
            with tf.device("/cpu:0"):
                embedding = tf.get_variable(
                    "embedding", [vocab_size, size], dtype=tf.float32)
            inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
            if is_training and config.keep_prob < 1:
                inputs = tf.nn.dropout(inputs, config.keep_prob)
            # Simplified version of models/tutorials/rnn/rnn.py's rnn().
            # This builds an unrolled LSTM for tutorial purposes only.
            # In general, use the rnn() or state_saving_rnn() from rnn.py.
            #
            # The alternative version of the code below is:
            #
            # inputs = tf.unstack(inputs, num=num_steps, axis=1)
            # outputs, state = tf.nn.rnn(cell, inputs,
            #                            initial_state=self._initial_state)
            outputs = []
            state = self._initial_state
            with tf.variable_scope("RNN"):
                for time_step in range(num_steps):
                    if time_step > 0: tf.get_variable_scope().reuse_variables()
                    (cell_output, state) = cell(inputs[:, time_step, :], state)
                    outputs.append(cell_output)
            output = tf.reshape(tf.concat(1, outputs), [-1, size])
            softmax_w = tf.get_variable(
                    "softmax_w", [size, vocab_size], dtype=tf.float32)
            softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=tf.float32)
            logits = tf.matmul(output, softmax_w) + softmax_b
            loss = tf.nn.seq2seq.sequence_loss_by_example(
                [logits],
                [tf.reshape(input_.targets, [-1])],
                [tf.ones([batch_size * num_steps], dtype=tf.float32)])
            self._cost = cost = tf.reduce_sum(loss) / batch_size
            self._final_state = state
            tf.add_to_collection("final_state",self._final_state)
            print("state:",state)
            if not is_training:
                return
            self._lr = tf.Variable(0.0, trainable=False)
            tvars = tf.trainable_variables()
            grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
                                                config.max_grad_norm)
            optimizer = tf.train.GradientDescentOptimizer(self._lr)
            self._train_op = optimizer.apply_gradients(
                zip(grads, tvars),
                global_step=tf.contrib.framework.get_or_create_global_step())
            self._new_lr = tf.placeholder(
                        tf.float32, shape=[], name="new_learning_rate")
            self._lr_update = tf.assign(self._lr, self._new_lr)
    
            self.saver = saver = tf.train.Saver()
    
    
        def assign_lr(self, session, lr_value):
            session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
    
        @property
        def input(self):
            return self._input
    
        @property
        def initial_state(self):
            return self._initial_state
    
        @property
        def cost(self):
            return self._cost
    
        @property
        def final_state(self):
            return self._final_state
    
        @property
        def lr(self):
            return self._lr
    
        @property
        def train_op(self):
            return self._train_op
    
    class SmallConfig(object):
        """Small config."""
        init_scale = 0.1
        learning_rate = 1.0
        max_grad_norm = 5
        num_layers = 2
        num_steps = 20
        hidden_size = 200
        max_epoch = 4
        max_max_epoch = 13
        keep_prob = 1.0
        lr_decay = 0.5
        batch_size = 20
        vocab_size = 10000
    
    
    class MediumConfig(object):
        """Medium config."""
        init_scale = 0.05
        learning_rate = 1.0
        max_grad_norm = 5
        num_layers = 2
        num_steps = 35
        hidden_size = 650
        max_epoch = 6
        max_max_epoch = 39
        keep_prob = 0.5
        lr_decay = 0.8
        batch_size = 20
        vocab_size = 10000
    
    
    class LargeConfig(object):
        """Large config."""
        init_scale = 0.04
        learning_rate = 1.0
        max_grad_norm = 10
        num_layers = 2
        num_steps = 35
        hidden_size = 1500
        max_epoch = 14
        max_max_epoch = 55
        keep_prob = 0.35
        lr_decay = 1 / 1.15
        batch_size = 20
        vocab_size = 10000
    
    
    class TestConfig(object):
        """Tiny config, for testing."""
        init_scale = 0.1
        learning_rate = 1.0
        max_grad_norm = 1
        num_layers = 1
        num_steps = 2
        hidden_size = 2
        max_epoch = 1
        max_max_epoch = 1
        keep_prob = 1.0
        lr_decay = 0.5
        batch_size = 20
        vocab_size = 10000
    
    def run_epoch(session, model,data,eval_op=None, verbose=False):
        """Runs the model on the given data."""
        start_time = time.time()
        costs = 0.0
        iters = 0
        state = session.run(model.initial_state)
        fetches = {
            "cost": model.cost,
            "final_state": model.final_state,
        }
        if eval_op is not None:
            fetches["eval_op"] = eval_op
        for step in range(model.input.epoch_size):
            feed_dict = {}
            for i, (c, h) in enumerate(model.initial_state):
                feed_dict[c] = state[i].c
                feed_dict[h] = state[i].h
    
            x,y = session.run([model.input.x,model.input.y])
            feed_dict[model.input.input_data] = x
            feed_dict[model.input.targets] = y
    
            vals = session.run(fetches, feed_dict)
            cost = vals["cost"]
            state = vals["final_state"]
            costs += cost
            iters += model.input.num_steps
            if verbose and step % (model.input.epoch_size // 10) == 10:
                print("%.3f perplexity: %.3f speed: %.0f wps" %
                      (step * 1.0 / model.input.epoch_size, np.exp(costs / iters),
                       iters * model.input.batch_size / (time.time() - start_time)))
        return np.exp(costs / iters)
    
    #获取句子的向量
    def predict(session,model,data,verbose=False):
        result = []#存储表示句子的向量
        state = session.run(model.initial_state)
    
        saver = tf.train.import_meta_graph("E:/LSTM/models/model.ckpt.meta")
        saver.restore(session,"E:/LSTM/models/model.ckpt")
        final_state = tf.get_collection("final_state")[0]
        fetches = {"final_state":final_state}
        for step in range(model.input.epoch_size):
            feed_dict = {}
            for i, (c, h) in enumerate(model.initial_state):
                feed_dict[c] = state[i].c
                feed_dict[h] = state[i].h
    
            x, y = session.run([model.input.x, model.input.y])
            feed_dict[model.input.input_data] = x
            feed_dict[model.input.targets] = y
            vals = session.run(fetches, feed_dict)
            result.append(vals[-1].h)
            print(vals[-1].h)
        return result
    
    raw_data = reader.ptb_raw_data('E:/LSTM/simple-examples/data/')
    train_data, valid_data, test_data, _ = raw_data
    
    config = SmallConfig()
    eval_config = SmallConfig()
    eval_config.batch_size = 1
    eval_config.num_steps = 1
    with tf.Graph().as_default() as g:
        initializer = tf.random_uniform_initializer(-config.init_scale,
                                                    config.init_scale)
        with g.name_scope("Train"):
            train_input = PTBInput(config=config, data=train_data, name="TrainInput")
            with tf.variable_scope("Model", reuse=None, initializer=initializer):
                m = PTBModel(is_training=True, config=config, input_=train_input)
                # tf.scalar_summary("Training Loss", m.cost)
                # tf.scalar_summary("Learning Rate", m.lr)
        with g.name_scope("Valid"):
            valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
            with tf.variable_scope("Model", reuse=True, initializer=initializer):
                mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
                # tf.scalar_summary("Validation Loss", mvalid.cost)
        with g.name_scope("Test"):
            test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
            with tf.variable_scope("Model", reuse=True, initializer=initializer):
                mtest = PTBModel(is_training=False, config=eval_config,
                                 input_=test_input)
    
        sv = tf.train.Supervisor()
        with sv.managed_session() as session:
            summary_writer = tf.train.SummaryWriter('E:/LSTM/lstm_logs', session.graph)
            for i in range(config.max_max_epoch):
                lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
                m.assign_lr(session, config.learning_rate * lr_decay)
                print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
                train_perplexity = run_epoch(session, m, data=train_data,eval_op=m.train_op,
                                             verbose=True)
                print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
                valid_perplexity = run_epoch(session, mvalid,data=valid_data)
                print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
    
            m.saver.save(session, "E:/LSTM/models/model.ckpt")
            sentences = predict(session, mtest,data=test_data)#获取句子向量
    
  • 相关阅读:
    页面框架布局
    socket、tcp、udp、http 的认识及区别
    servlet验证码的设置
    java换行符
    如何在jsp里禁止session
    EL和JSTL表达式
    C标签
    request与response
    文件上传与下载—>struts
    页面跳转
  • 原文地址:https://www.cnblogs.com/txq157/p/7516141.html
Copyright © 2011-2022 走看看