网络流是啥不用我说了吧
增广路定理不用我说了吧
Dinic就是分层然后只在层间转移,然后就特别快,$$O(N^2M)$$
伪代码:
function dinic
int flow = 0 ;
while bfs() do
memsets()
while int val = dfs() do
flow += val;
return flow
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std ;
#define MAXN 1000005
int head[MAXN],ver[MAXN*4],edge[MAXN*4],Next[MAXN*4],tot=-1,s,t ;
int dep[MAXN],cur[MAXN] ;
int n,m ;
void init(){
tot = -1 , memset(head,-1,sizeof(head)),memset(Next,-1,sizeof(Next)) ;
}
void _add(int u,int v,int w){
ver[++tot]=v,
edge[tot]=w,
Next[tot]=head[u],
head[u]=tot ;
}
void add(int u,int v,int w){
_add(u,v,w),
_add(v,u,0) ;
}
int bfs(){
memset(dep,0,sizeof(dep)) ;
queue<int> Q ;while(!Q.empty()) Q.pop() ;
Q.push(s) ; dep[s] = 1 ;
while(!Q.empty()){
int v=Q.front() ; Q.pop() ;
for(int i=head[v];i!=-1;i=Next[i]){
//printf("Bfs: at dot %d
",ver[i]) ;
//for(int j=1;j<=MAXN*10;++j) ;
if(dep[ver[i]] == 0 && edge[i]>0)
dep[ver[i]] = dep[v]+1 , Q.push(ver[i]) ;
}
}
if(!dep[t]) return 0 ;
return 1 ;
}
int dfs(int u,int f){
if(u == t) return f ;
for(int& i=cur[u];i!=-1;i=Next[i]){
if(dep[ver[i]] == dep[u]+1 && edge[i]!=0){
int di = dfs(ver[i],min(edge[i],f)) ;
if(di > 0){
edge[i] -= di , edge[i^1] += di ;
return di ;
}
}
}
return 0 ;
}
int Dinic(){
int flow = 0 , d = 0 ;
while(bfs()){
for(int i=1;i<=n;++i) cur[i] = head[i] ;
while(d = dfs(s,0x3f3f3f3f)) flow += d ;
}
return flow ;
}
int main(){
init() ;
scanf("%d%d%d%d",&n,&m,&s,&t) ;
for(int i=1;i<=m;++i){
int x,y,z ; scanf("%d%d%d",&x,&y,&z) ; add(x,y,z) ;
}
printf("%d
",Dinic()) ;
}