题意:从(1,1)走到(m,n),最多能连续穿越k个障碍,求最短路。
分析:obstacle队列记录当前点所穿越的障碍数,如果小于k可继续穿越障碍,否则不能,bfs即可。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) typedef long long ll; typedef unsigned long long llu; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const ll LL_INF = 0x3f3f3f3f3f3f3f3f; const ll LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const double eps = 1e-8; const int MAXN = 20 + 10; const int MAXT = 10000 + 10; using namespace std; int pic[MAXN][MAXN]; int vis[MAXN][MAXN]; int m, n, k; bool judge(int x, int y){ return x >= 1 && x <= m && y >= 1 && y <= n; } int bfs(){ queue<int> x, y, step, obstacle; x.push(1); y.push(1); step.push(0); obstacle.push(0); vis[1][1] = 1; while(!x.empty()){ int tmpx = x.front(); x.pop(); int tmpy = y.front(); y.pop(); int tmpstep = step.front(); step.pop(); int tmpobstacle = obstacle.front(); obstacle.pop(); for(int i = 0; i < 4; ++i){ int tx = tmpx + dr[i]; int ty = tmpy + dc[i]; if(judge(tx, ty) && !vis[tx][ty]){ if(tx == m && ty == n) return tmpstep + 1; if(pic[tx][ty] == 0){ vis[tx][ty] = 1; x.push(tx); y.push(ty); step.push(tmpstep + 1); obstacle.push(0); } else if(pic[tx][ty] == 1){ int nowobstacle = tmpobstacle + 1; if(nowobstacle <= k){ x.push(tx); y.push(ty); step.push(tmpstep + 1); obstacle.push(nowobstacle); } } } } } return -1; } int main(){ int T; scanf("%d", &T); while(T--){ memset(pic, 0, sizeof pic); memset(vis, 0, sizeof vis); scanf("%d%d%d", &m, &n, &k); for(int i = 1; i <= m; ++i){ for(int j = 1; j <= n; ++j){ scanf("%d", &pic[i][j]); } } int ans = bfs(); printf("%d\n", ans); } return 0; }