题意:把一个包含m个正整数的序列划分成k个(1<=k<=m<=500)非空的连续子序列,使得每个正整数恰好属于一个序列(所有的序列不重叠,且每个正整数都要有所属序列)。设第i个序列的各数之和为S(i),你的任务是让所有的S(i)的最大值尽量小。如果有多解,S(1)应尽量小,如果仍有多解,S(2)应尽量小,依此类推。
分析:
1、二分最小值x。
2、判断当前x是否满足条件时,从右往左尽量划分,若cnt<k,则从0开始依次标为分界点,这样可满足S(1),S(2),……,尽量小。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const double eps = 1e-8; const int MAXN = 500 + 10; const int MAXT = 10000 + 10; using namespace std; LL a[MAXN]; int m, k; int cnt; int vis[MAXN];//分界点 bool judge(LL x){ memset(vis, 0, sizeof vis); cnt = 0; int pos = m - 1; while(pos >= 0){ int num = 0;//当前序列中的元素 LL sum = 0; while(pos >= 0 && sum + a[pos] <= x){ sum += a[pos]; ++num; --pos; } if(!num) return false;//若当前序列中没有元素,说明x太小 if(pos >= 0) vis[pos] = 1; ++cnt; } if(cnt > k) return false; return true; } void solve(){ LL l = 0, r = 1e15; while(l < r){ LL mid = l + (r - l) / 2; if(judge(mid)) r = mid; else l = mid + 1; } if(judge(r)){ for(int i = 0; i < m - 1 && cnt < k; ++i){ if(!vis[i]){ vis[i] = 1; ++cnt; } } for(int i = 0; i < m; ++i){ if(i) printf(" "); printf("%lld", a[i]); if(vis[i]) printf(" /"); } printf("\n"); } } int main(){ int T; scanf("%d", &T); while(T--){ scanf("%d%d", &m, &k); for(int i = 0; i < m; ++i){ scanf("%lld", &a[i]); } solve(); } return 0; }