题意:给两个6行5列的字母矩阵,找出满足如下条件的“密码”:密码中的每个字母在两个矩阵的对应列中均出现。给定k(1<=k<=7777),你的任务是找出字典序第k小的密码。如果不存在,输出NO。
分析:因为k<=7777,直接按字典序从小到大的顺序递归一个一个的枚举。
注意:定义在dfs里的vis不能放在全局,否则会导致值的混用。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 30000000 + 10; const int MAXT = 10000 + 10; using namespace std; char pic[2][6][5]; char ans[6]; int k; int cnt; bool dfs(int cur){ if(cur == 5){ if(++cnt == k){ ans[cur] = '\0'; return true; } return false; } int vis[2][26]; memset(vis, 0, sizeof vis); for(int i = 0; i < 2; ++i){ for(int j = 0; j < 6; ++j){ vis[i][pic[i][j][cur] - 'A'] = 1; } } for(int i = 0; i < 26; ++i){ if(vis[0][i] && vis[1][i]){ ans[cur] = 'A' + i; if(dfs(cur + 1)) return true; } } return false; } int main(){ int T; scanf("%d", &T); while(T--){ cnt = 0; scanf("%d", &k); for(int i = 0; i < 2; ++i){ for(int j = 0; j < 6; ++j){ scanf("%s", pic[i][j]); } } if(!dfs(0)){ printf("NO\n"); } else{ printf("%s\n", ans); } } return 0; }