题意:输入n(n <=1000),统计有多少个n结点的有根树,使得每个深度中所有结点的子结点数相同。输出数目除以109+7的余数。
分析:
1、dp[i],i个结点的有根树个数
2、假设n=7,则根结点之外有6个结点。
根的子树有四种情况:
(1)6个结点数为1的子树
(2)3个结点数为2的子树
(3)2个结点数为3的子树
(4)1个结点数为6的子树
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b) { if(fabs(a - b) < eps) return 0; return a < b ? -1 : 1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 1000 + 10; const int MAXT = 10000 + 10; using namespace std; int dp[MAXN]; void init(){ dp[1] = 1; for(int i = 2; i <= 1000; ++i){ for(int j = 1; j < i; ++j){ if((i - 1) % j == 0){//i-1除去根结点后的结点数,j为子树的结点数 (dp[i] += dp[j]) %= MOD; } } } } int main(){ int kase = 0; int n; init(); while(scanf("%d", &n) == 1){ printf("Case %d: %d\n", ++kase, dp[n]); } return 0; }