题意:有一个n行m列(1<=n, m<=20)的网格蛋糕上有一些樱桃。每次可以用一刀沿着网格线把蛋糕切成两块,并且只能够直切不能拐弯。要求最后每一块蛋糕上恰好有一个樱桃,且切割线总长度最小。
分析:dp[up][down][left][right]表示上下左右界分别为up,down,left,right的蛋糕,为了使最后每一块蛋糕上恰好有一个樱桃,切割线的最小总长度。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 20 + 10; const int MAXT = 10000 + 10; using namespace std; int pic[MAXN][MAXN]; int dp[MAXN][MAXN][MAXN][MAXN]; int getNum(int up, int down, int left, int right){//求蛋糕上的樱桃数 int ans = 0; for(int i = up; i <= down; ++i){ for(int j = left; j <= right; ++j){ if(pic[i][j]) ++ans; } } return ans; } int dfs(int num, int up, int down, int left, int right){//num蛋糕上的樱桃数 if(dp[up][down][left][right] != -1) return dp[up][down][left][right]; if(num == 1) return dp[up][down][left][right] = 0; int ans = INT_INF; for(int i = up; i < down; ++i){//枚举分割线,i为第i行下面的分隔线,横切 int tmp = getNum(up, i, left, right);//切割完上半部分蛋糕上的樱桃数 if(tmp >= 1 && tmp < num){//被切割成的两块蛋糕上都有樱桃 int x = dfs(tmp, up, i, left, right); int y = dfs(num - tmp, i + 1, down, left, right); ans = Min(ans, x + y + right - left + 1); } } for(int i = left; i < right; ++i){//竖切 int tmp = getNum(up, down, left, i); if(tmp >= 1 && tmp < num){ int x = dfs(tmp, up, down, left, i); int y = dfs(num - tmp, up, down, i + 1, right); ans = Min(ans, x + y + down - up + 1); } } return dp[up][down][left][right] = ans; } int main(){ int n, m, k; int kase = 0; while(scanf("%d%d%d", &n, &m, &k) == 3){ memset(pic, 0, sizeof pic); memset(dp, -1, sizeof dp); for(int i = 0; i < k; ++i){ int x, y; scanf("%d%d", &x, &y); pic[x][y] = 1; } printf("Case %d: %d\n", ++kase, dfs(k, 1, n, 1, m)); } return 0; }