题意:有n个高度不同的直方图,求直方图内最大的矩形面积。
分析:
1、若当前研究高度大于栈顶高度,则直接入栈。否则,边处理栈内所有高度大于等于当前高度的元素边出栈,在此过程中,边累加宽度边以当前栈顶元素为高算出矩形面积,比较最大值,直到最终将比当前高度大的元素都捋平,将捋平后的高度即当前高度,和最终累积的宽度入栈。
2、上述处理的结果,使得栈内所剩的元素都是从栈顶到栈底高度递减,按照与1相同的处理方法计算栈内元素的矩形面积,比较最大值即可。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 100000 + 10; const int MAXT = 10000 + 10; using namespace std; struct Node{ int h, w; Node(){} Node(int hh, int ww):h(hh), w(ww){} }num[MAXN]; stack<Node> s; int main(){ int n; while(scanf("%d", &n) == 1){ if(!n) return 0; for(int i = 0; i < n; ++i){ scanf("%d", &num[i].h); } LL ans = 0; for(int i = 0; i < n; ++i){ int width = 0; while(!s.empty() && s.top().h >= num[i].h){ int tmph = s.top().h; int tmpw = s.top().w; s.pop(); width += tmpw; ans = Max(ans, (LL)tmph * width); } s.push(Node(num[i].h, width + 1)); } int t = 0; while(!s.empty()){ Node tmp = s.top(); s.pop(); ans = Max(ans, (LL)tmp.h * (t + tmp.w)); t += tmp.w; } printf("%lld\n", ans); } return 0; }