题意:要从起点的石头跳到终点的石头,设The frog distance为从起点到终点的某一路径中两点间距离的最大值,问在从起点到终点的所有路径中The frog distance的最小值为多少。
分析:
解法一:Dijkstra,修改最短路模板,d[u]表示从起点到u的所有路径中两点间距离的最大值的最小值。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-15; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 200 + 10; const int MAXT = 10000 + 10; using namespace std; struct Edge{ int from, to; double dist; Edge(int f, int t, double d):from(f), to(t), dist(d){} }; struct HeapNode{ double d; int u; HeapNode(double dd, int uu):d(dd), u(uu){} bool operator < (const HeapNode& rhs)const{ return d > rhs.d; } }; struct Dijkstra{ int n, m; vector<Edge> edges; vector<int> G[MAXN]; double d[MAXN]; bool done[MAXN]; void init(int n){ this -> n = n; for(int i = 0; i <= n; ++i) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, double dist){ edges.push_back(Edge(from, to, dist)); m = edges.size(); G[from].push_back(m - 1); } void dijkstra(int s){ priority_queue<HeapNode> Q; for(int i = 0; i <= n; ++i){ d[i] = 10000000.0; } memset(done, false, sizeof done); d[s] = 0; Q.push(HeapNode(0, s)); while(!Q.empty()){ HeapNode x = Q.top(); Q.pop(); int u = x.u; if(done[u]) continue; done[u] = true; for(int i = 0; i < G[u].size(); ++i){ Edge &e = edges[G[u][i]]; double tmp = max(d[u], e.dist); if(tmp < d[e.to]) { d[e.to] = tmp; Q.push(HeapNode(d[e.to], e.to)); } } } } }dij; struct Node{ int x, y; void read(){ scanf("%d%d", &x, &y); } }num[MAXN]; double getD(Node& a, Node &b){ return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); } int main(){ int n; int kase = 0; while(scanf("%d", &n) == 1){ if(!n) return 0; for(int i = 0; i < n; ++i) num[i].read(); dij.init(n); for(int i = 0; i < n; ++i){ for(int j = i + 1; j < n; ++j){ double d = getD(num[i], num[j]); dij.AddEdge(i, j, d); dij.AddEdge(j, i, d); } } dij.dijkstra(0); printf("Scenario #%d\nFrog Distance = %.3f\n\n", ++kase, dij.d[1]); } return 0; }
解法二:flod,pic[i][j]表示从i到j的所有路径中两点间距离的最大值的最小值。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 200 + 10; const int MAXT = 10000 + 10; using namespace std; double pic[MAXN][MAXN]; struct Node{ int x, y; void read(){ scanf("%d%d", &x, &y); } }num[MAXN]; double getD(Node& a, Node &b){ return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); } int main(){ int n; int kase = 0; while(scanf("%d", &n) == 1){ if(!n) return 0; for(int i = 0; i < n; ++i) num[i].read(); for(int i = 0; i < n; ++i){ for(int j = i + 1; j < n; ++j){ double d = getD(num[i], num[j]); pic[i][j] = pic[j][i] = d; } } for(int k = 0; k < n; ++k){ for(int i = 0; i < n; ++i){ for(int j = i + 1; j < n; ++j){ if(pic[i][k] < pic[i][j] && pic[k][j] < pic[i][j]){ pic[j][i] = pic[i][j] = max(pic[i][k], pic[k][j]); } } } } printf("Scenario #%d\nFrog Distance = %.3f\n\n", ++kase, pic[0][1]); } return 0; }