题意:给定n个数,要求修改其中最少的数,使得这n个数满足ai + 1 - ai = k。
分析:
暴力,1000*1000。
1、这n个数,就是一个首项为a1,公差为k的等差数列。k已知,如果确定了a1,就能确定整个数列。
2、1 ≤ ai ≤ 1000,因此,可以从1~1000中枚举a1,将形成的数列与给定的数列比较,统计两数列对应下标中不同数字的个数。
3、不同数字的个数最少的那个数列就是最终要修改成的数列,然后输出对应下标的那个数的变化值即可。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 1000 + 10; const int MAXT = 10000 + 10; using namespace std; int a[MAXN]; int main(){ int n, k; scanf("%d%d", &n, &k); for(int i = 1; i <= n; ++i){ scanf("%d", &a[i]); } int id = 0; int _min = 0x7f7f7f7f; for(int i = 1; i <= 1000; ++i){ int cnt = 0; for(int j = 1; j <= n; ++j){ if(a[j] != i + (j - 1) * k){ ++cnt; } } if(cnt < _min){ _min = cnt; id = i; } } printf("%d ", _min); for(int i = 1; i <= n; ++i){ if(a[i] != id + (i - 1) * k){ if(a[i] > id + (i - 1) * k){ printf("- %d %d ", i, a[i] - id - (i - 1) * k); } else{ printf("+ %d %d ", i, id + (i - 1) * k - a[i]); } } } return 0; }