题意:有N个点,分布于一个圆心在原点的圆的边缘上,问所形成的所有三角形面积之和。
分析:
1、sin的内部实现是泰勒展开式,复杂度较高,所以需预处理。
2、求出每两点的距离以及该边所在弧所对应的圆周角。一条弧所对圆周角等于它所对圆心角的一半。
3、S = 1/2*absinC求三角形面积即可。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 500 + 10; const int MAXT = 10000 + 10; using namespace std; int N; double R; double Sin[MAXN][MAXN]; double dist[MAXN][MAXN]; struct Node{ double x, y, rad; void read(){ scanf("%lf", &rad); rad = rad / 180.0 * pi; x = R * cos(rad); y = R * sin(rad); } }num[MAXN]; double getDist(int i, int j){ return sqrt((num[i].x - num[j].x) * (num[i].x - num[j].x) + (num[i].y - num[j].y) * (num[i].y - num[j].y)); } int main(){ while(scanf("%d%lf", &N, &R) == 2){ if(N == 0 && R == 0) return 0; memset(Sin, 0, sizeof Sin); memset(dist, 0, sizeof dist); for(int i = 0; i < N; ++i){ num[i].read(); } for(int i = 0; i < N; ++i){ for(int j = i + 1; j < N; ++j){ Sin[i][j] = sin(fabs(num[j].rad - num[i].rad) / 2.0); dist[i][j] = dist[j][i] = getDist(i, j); } } double sum = 0.0; for(int i = 0; i < N; ++i){ for(int j = i + 1; j < N; ++j){ for(int k = j + 1; k < N; ++k){ sum += dist[i][j] * dist[i][k] * Sin[j][k] / 2; } } } double ans = round(sum); printf("%.0lf ", ans); } return 0; }