zoukankan      html  css  js  c++  java
  • UVA

    题意:有N个点,分布于一个圆心在原点的圆的边缘上,问所形成的所有三角形面积之和。

    分析:

    1、sin的内部实现是泰勒展开式,复杂度较高,所以需预处理。

    2、求出每两点的距离以及该边所在弧所对应的圆周角。一条弧所对圆周角等于它所对圆心角的一半。

    3、S = 1/2*absinC求三角形面积即可。

    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<cmath>
    #include<iostream>
    #include<sstream>
    #include<iterator>
    #include<algorithm>
    #include<string>
    #include<vector>
    #include<set>
    #include<map>
    #include<stack>
    #include<deque>
    #include<queue>
    #include<list>
    #define lowbit(x) (x & (-x))
    const double eps = 1e-8;
    inline int dcmp(double a, double b){
        if(fabs(a - b) < eps) return 0;
        return a > b ? 1 : -1;
    }
    typedef long long LL;
    typedef unsigned long long ULL;
    const int INT_INF = 0x3f3f3f3f;
    const int INT_M_INF = 0x7f7f7f7f;
    const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
    const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
    const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
    const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
    const int MOD = 1e9 + 7;
    const double pi = acos(-1.0);
    const int MAXN = 500 + 10;
    const int MAXT = 10000 + 10;
    using namespace std;
    int N;
    double R;
    double Sin[MAXN][MAXN];
    double dist[MAXN][MAXN];
    struct Node{
        double x, y, rad;
        void read(){
            scanf("%lf", &rad);
            rad = rad / 180.0 * pi;
            x = R * cos(rad);
            y = R * sin(rad);
        }
    }num[MAXN];
    double getDist(int i, int j){
        return sqrt((num[i].x - num[j].x) * (num[i].x - num[j].x) + (num[i].y - num[j].y) * (num[i].y - num[j].y));
    }
    int main(){
        while(scanf("%d%lf", &N, &R) == 2){
            if(N == 0 && R == 0) return 0;
            memset(Sin, 0, sizeof Sin);
            memset(dist, 0, sizeof dist);
            for(int i = 0; i < N; ++i){
                num[i].read();
            }
            for(int i = 0; i < N; ++i){
                for(int j = i + 1; j < N; ++j){
                    Sin[i][j] = sin(fabs(num[j].rad - num[i].rad) / 2.0);
                    dist[i][j] = dist[j][i] = getDist(i, j);
                }
            }
            double sum = 0.0;
            for(int i = 0; i < N; ++i){
                for(int j = i + 1; j < N; ++j){
                    for(int k = j + 1; k < N; ++k){
                        sum += dist[i][j] * dist[i][k] * Sin[j][k] / 2;
                    }
                }
            }
            double ans = round(sum);
            printf("%.0lf
    ", ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    实用产品规划
    产品经理对用户的调研
    产品经理用户研究
    竞品分析方案
    产品竞品分析
    Mybatis Plus
    shiro
    Spring cloud
    Spring Boot
    Redis入门(二)
  • 原文地址:https://www.cnblogs.com/tyty-Somnuspoppy/p/7417762.html
Copyright © 2011-2022 走看看