题意:有n张标有“C”或“F”的卡片。
1、随机取前k张(1<=k<=n)
2、若这k张的第一张为“C”,则不翻转,否则,全部翻转这k张。
3、然后处理剩下的n-k张
4、重复步骤1~3直至处理完所有卡片。
求处理后卡片W的个数期望。
分析:期望dp从后往前推。
1、对于最后一张卡片,无论为C还是W,最后的结果都是W个数为0,因此dp[len] = 0.
2、对于卡片i,k有(len - i + 1)种选择
若卡片i为C,则前k张卡片是不反转的,预处理前缀和。
k = 1, 1 / (len - i + 1) * (0 + dp[i + 1])
k = 2, 1 / (len - i + 1) * (前两张卡片中W的个数 + dp[i + 2])
.......
k = len - i + 1, 1 / (len - i + 1) * (前len - i + 1张卡片中W的个数)
若卡片i为W,同理也处理处前缀和。
提取公因数1 / (len - i + 1)后,后面的式子合并dp[i + 1] + dp[i + 2] +...+ dp[len]可以边算边处理出后缀和sumsuf[i]。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 1000000 + 10; const int MAXT = 10000 + 10; using namespace std; char s[MAXN]; LL a1[MAXN], a2[MAXN]; LL sum1[MAXN], sum2[MAXN]; double sumsuf[MAXN], dp[MAXN]; int main(){ freopen("foreign.in", "r", stdin); freopen("foreign.out", "w", stdout); scanf("%s", s + 1); int len = strlen(s + 1); for(int i = 1; i <= len; ++i){ if(s[i] == 'W') a1[i] = a1[i - 1] + 1; else a1[i] = a1[i - 1]; } for(int i = 1; i <= len; ++i){ if(s[i] == 'C') a2[i] = a2[i - 1] + 1; else a2[i] = a2[i - 1]; } for(int i = 1; i <= len; ++i){ sum1[i] = sum1[i - 1] + a1[i]; sum2[i] = sum2[i - 1] + a2[i]; } dp[len] = 0; sumsuf[len] = 0; for(int i = len - 1; i >= 1; --i){ LL tmp; if(s[i] == 'C'){ tmp = sum1[len] - sum1[i - 1] - a1[i] * (len - i + 1); } else{ tmp = sum2[len] - sum2[i - 1] - a2[i] * (len - i + 1); } dp[i] = (1 / (double)(len - i + 1)) * (sumsuf[i + 1] + tmp); sumsuf[i] = sumsuf[i + 1] + dp[i]; } printf("%.12lf ", dp[1]); return 0; }