题意:给定一个n个点的树,该树同时也是一个二分图,问最多能添加多少条边,使添加后的图也是一个二分图。
分析:
1、通过二分图染色,将树中所有节点分成两个集合,大小分别为cnt1和cnt2。
2、两个集合间总共可以连cnt1*cnt2条边,给定的是一个树,因此已经连了n-1条边,所以最多能连cnt1*cnt2-(n-1)条边。
3、注意输出。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 100000 + 10; const int MAXT = 10000 + 10; using namespace std; int color[MAXN]; vector<int> G[MAXN]; bool dfs(int v, int c){ color[v] = c; int len = G[v].size(); for(int i = 0; i < len; ++i){ if(color[G[v][i]] == c) return false; if(color[G[v][i]] == 0 && !dfs(G[v][i], -c)) return false; } return true; } int main(){ int n; scanf("%d", &n); int a, b; for(int i = 0; i < n - 1; ++i){ scanf("%d%d", &a, &b); G[a].push_back(b); G[b].push_back(a); } for(int i = 1; i <= n; ++i){ if(color[i] == 0){ dfs(i, 1); } } int cnt1 = 0; int cnt2 = 0; for(int i = 1; i <= n; ++i){ if(color[i] == 1) ++cnt1; if(color[i] == -1) ++cnt2; } printf("%lld ", (LL)cnt1 * (LL)cnt2 - (n - 1)); return 0; }