1132 Cut Integer(20 分)
题意:将一个含K(K为偶数)个数字的整数Z割分为A和B两部分,若Z能被A*B整除,则输出Yes,否则输出No。
分析:当A*B为0的时候,不能被Z整除,输出No。否则会出现浮点错误。
#include<cstdio> #include<cstring> #include<cstdlib> #include<string> #include<algorithm> #include<map> #include<iostream> #include<vector> #include<set> #include<cmath> using namespace std; char s[20]; int main(){ int N; scanf("%d", &N); while(N--){ scanf("%s", s); int len = strlen(s); int A = 0; for(int i = 0; i < len / 2; ++i){ A = A * 10 + s[i] - '0'; } int B = 0; for(int i = len / 2; i < len; ++i){ B = B * 10 + s[i] - '0'; } int C = A * B; if(C == 0){ printf("No "); continue; } int x = atoi(s); if(x % C == 0) printf("Yes "); else printf("No "); } return 0; }
1133 Splitting A Linked List(25 分)
题意:给定一个链表,将链表重新排序,在不打乱原链表相对顺序的前提下,小于0的在最前面,其次是0~K,最后是大于K的数。
分析:
1、3次遍历可实现链表重排。
2、map映射value和pre或suc的关系会超时,所以,以pre为结点定义结构体,组织链表的重排,从而进行优化。
#include<cstdio> #include<cstring> #include<cstdlib> #include<string> #include<algorithm> #include<map> #include<iostream> #include<vector> #include<set> #include<cmath> using namespace std; const int MAXN = 100000 + 10; struct Node{ int pre, value, suc; }num[MAXN]; vector<int> old, ans; int main(){ int N, K, head, pre, value, suc; scanf("%d%d%d", &head, &N, &K); for(int i = 0; i < N; ++i){ scanf("%d%d%d", &pre, &value, &suc); num[pre].pre = pre; num[pre].value = value; num[pre].suc = suc; } while(head != -1){ old.push_back(head); head = num[head].suc; } int len = old.size(); for(int i = 0; i < len; ++i){ if(num[old[i]].value < 0) ans.push_back(old[i]); } for(int i = 0; i < len; ++i){ if(num[old[i]].value >= 0 && num[old[i]].value <= K) ans.push_back(old[i]); } for(int i = 0; i < len; ++i){ if(num[old[i]].value > K) ans.push_back(old[i]); } for(int i = 0; i < len - 1; ++i){ printf("%05d %d %05d ", ans[i], num[ans[i]].value, ans[i + 1]); } printf("%05d %d -1 ", ans[len - 1], num[ans[len - 1]].value); return 0; }
1134 Vertex Cover(25 分)
题意:vertex cover是指图中一些点的集合,使得图中每一条边的两个点中都至少有一个点在该点集中。给定点的集合,判断是否为vertex cover。
分析:按题意模拟即可。
#include<cstdio> #include<cstring> #include<cstdlib> #include<string> #include<algorithm> #include<map> #include<iostream> #include<vector> #include<set> #include<cmath> using namespace std; const int MAXN = 10000 + 10; int N, M; bool vis[MAXN]; struct Edge{ int u, v; void read(){ scanf("%d%d", &u, &v); } }num[MAXN]; int main(){ scanf("%d%d", &N, &M); for(int i = 0; i < M; ++i){ num[i].read(); } int K; scanf("%d", &K); while(K--){ int n, x; scanf("%d", &n); memset(vis, false, sizeof vis); while(n--){ scanf("%d", &x); vis[x] = true; } bool ok = true; for(int i = 0; i < M; ++i){ if(vis[num[i].u] || vis[num[i].v]) continue; ok = false; break; } if(ok) printf("Yes "); else printf("No "); } return 0; }
1135 Is It A Red-Black Tree(30 分
题意:给定一棵二叉搜索树的前序遍历序列,判断其是否为一棵红黑树。
分析:
1、红黑树是一棵平衡的二叉搜索树,满足以下条件:
(1)所有结点不是红色就是黑色;
(2)根结点是黑色;
(3)每一个为NULL的叶子结点是黑色;
(4)如果某结点是红色,其左右子结点都是黑色;
(5)对于每个结点,其到所有后代叶子结点经过的黑色结点数相同;
2、根据给定的前序遍历序列,结合二叉搜索树的定义可以建树。
3、递归检查条件4。
4、同理,递归统计左右子树的黑色结点数,来检查条件5。
#include<cstdio> #include<cstring> #include<cstdlib> #include<string> #include<algorithm> #include<map> #include<iostream> #include<vector> #include<set> #include<cmath> using namespace std; const int MAXN = 30 + 10; struct Node{ Node *left, *right; int value; }; struct Node *root; bool ok; void build(Node* &r, int x){ if(r == NULL){ r = (Node*)malloc(sizeof(Node)); r -> value = x; r -> left = r -> right = NULL; return; } if(abs(x) < abs(r -> value)){ build(r -> left, x); } else{ build(r -> right, x); } } void judge_RedNode(Node* r){ if(!ok) return; if(r -> left != NULL){ if(r -> value < 0 && r -> left -> value < 0){ ok = false; return; } else judge_RedNode(r -> left); } if(r -> right != NULL){ if(r -> value < 0 && r -> right -> value < 0){ ok = false; return; } else judge_RedNode(r -> right); } } int judge_BlackNode(Node* r){ int leftcnt, rightcnt; if(!ok) return -1; if(r == NULL) return 1; leftcnt = judge_BlackNode(r -> left); rightcnt = judge_BlackNode(r -> right); if(leftcnt != rightcnt){ ok = false; return -1; } else{ if(r -> value > 0) ++leftcnt; } return leftcnt; } int main(){ int K; scanf("%d", &K); while(K--){ root = NULL; int N, x; scanf("%d", &N); while(N--){ scanf("%d", &x); build(root, x); } ok = true; judge_RedNode(root); judge_BlackNode(root); if(root -> value < 0 || !ok){ printf("No "); } else{ printf("Yes "); } } return 0; }