zoukankan      html  css  js  c++  java
  • MapReduce的代码实现过程分析

    需求:使用mapreduce实现文件a.txt中不同单词出现的次数

    map之前:

    1):map处理之前的数据我们称为map<k1,v1>

    例:

    map<k1,v1> 在这里我们一次读取一行,行号就相当于k1,行的所有内容相当于v1

    map阶段:

    继承org.apache.hadoop.mapreduce.Mapper

    重写map

    2)将map<k1,v1>读取、解析并将结果存到map<k2,v2>中

    例:

    将文件(节点)中的数据,一次读取一行,将以空格或制表符连接的单词解析处理,然后以map<单词,次数>的形式存取。返回的数据我们称为map<k2,v2>

    注:在这里所有单词的次数都是1(如果一行中有两个相同的单词,也是分别存储两次)

    3):调用框架中的方法将map<k2,v2>按照k2分组并根据k2排序,我们将返回结果称为map<k2,v2s> ,其中v2s代表v2的集合。

    注:这一步由框架完成

    由于map阶段的数据很多,不可能把map<k2,v2s>一个一个的return出来,因为return一个之后,其他的就不能返回了,所以需要将结果存到一个上下文中,context.write(),

    reduce阶段:

    继承org.apache.hadoop.mapreduce.Reducer

    重写:reduce

    4):将map<k2,v2s>作为参数传入reduce中,reduce对相同k2的v2s进行汇总,返回结果我们称为map<k3,v3>

    例:

    遍历v2s将v2s相加,最终得到map<单词,总次数>的集合

    网络之间数据的传输都是通过序列化来完成的,由于map和reduce的传输过程中有很多大文件,而java的序列化过程会使文件变得更大,这样对传输效率影响很大,所以hadoop自己实现了序列化。

    java序列化的不足:

    1.不精简。附加信息多。不大适合随机访问。
    2.存储空间大。递归地输出类的超类描述直到不再有超类(即如果要序列化一个类,那么这个类的父类,父类的父类……等都需要序列化过去)。序列化图对象,反序列化时为每个对象新建一个实例。相反。Writable对象可以重用。
    3.扩展性差。而Writable方便用户自定义

    hadoop的序列化:

    1):格式

    Writable

    2):特点:(Writable序列化的都是java的基本类型)

    紧凑:高效使用存储空间。
    快速:读写数据的额外开销小
    可扩展:可透明地读取老格式的数据
    互操作:支持多语言的交互

  • 相关阅读:
    Python模块之pysnooper
    本站页脚HTML回顶部代码
    本站CSS代码
    Linux使用 tar命令-g参数进行增量+差异备份、还原文件
    mysql定时备份shell脚本
    Linux系统备份与还原
    MYSQL备份与恢复
    技术普及帖:你刚才在淘宝上买了一件东西
    Linux运维工程师前景
    Linux运维工程师需掌握的技能
  • 原文地址:https://www.cnblogs.com/tzq9308/p/5096814.html
Copyright © 2011-2022 走看看