zoukankan      html  css  js  c++  java
  • 动态逆序对

    带修改, 维护全局逆序对数。

    翻译成另一种风格:

    有 n 个点, 每个点两个属性 ai,bi, 每次修改一个点的 bi, 维护全局有多少个点对满足 ai<aj && bi>bj

    将修改换成先删除后插入, 逆序对的变动就看得很清楚了, 总体上还是要二维数点。

    树套树轻松搞。

    写两道例题。


    TJOI2017 不勤劳的图书管理员

    把题面翻译成人话。

    很多点 (x,y,z), x 是坐标, y 是应在的位置, z 是页数。

    若两个点 (x,y,z),(a,b,c) 满足 x<a && y>b, 则贡献 z+c。

    每次选两个点 (x,y,z),(a,b,c), 交换 x,a,求所有有贡献的点对的贡献和。

    仔细分析一下 , 还是一个二维偏序和问题, 树套树维护即可。

    #include<bits/stdc++.h>
    typedef long long LL;
    using namespace std;
    
    const int N = 5e4 + 3, mo = 1e9 + 7, SZ = N * 2 * 20 + 2333;
    const LL INF = 1e18;
    
    int n, m, a[N], v[N];
    
    LL ans = 0ll;
    struct BIT {
    	LL t[N];
    	BIT() {
    		memset(t, 0, sizeof t);
    	}
    	void ins(int x, int v) {
    		for(; x<=n; x += (x & (-x))) t[x] += v;
    	}
    	LL ask_(int x) {
    		LL res = 0ll;
    		for(; x; x -= (x & (-x))) res += t[x];
    		return res;
    	}
    	LL ask(int l, int r) {
    		if(l > r) return 0ll;
    		return ask_(r) - ask_(l - 1);
    	}
    } bit1, bit2;
    
    int cnt;
    #define newnode(s1, s2, v, a, b) (&(*pool[cnt++] = node(s1, s2, v, a, b)))
    #define merge(a, b) newnode(a->siz+b->siz, a->sum+b->sum, b->val, a, b)
    #define upd(me) if(me->ls->siz) me->siz=me->ls->siz+me->rs->siz, me->sum=me->ls->sum+me->rs->sum, me->val=me->rs->val
    struct node{
    	LL siz, sum, val;
    	node *ls, *rs;
    	node(LL s1, LL s2, LL v, node *a, node *b) : siz(s1), sum(s2), val(v), ls(a), rs(b) {
    	}
    	node() {
    	}
    } *emp, *root[N], t[SZ], *pool[SZ];
    
    inline void maintain(node *me) {
    	if(me->ls->siz > me->rs->siz * 4)
    		me->rs = merge(me->ls->rs, me->rs), pool[--cnt] = me->ls, me->ls = me->ls->ls;
    	if(me->rs->siz > me->ls->siz * 4)
    		me->ls = merge(me->ls, me->rs->ls), pool[--cnt] = me->rs, me->rs = me->rs->rs;
    }
    
    void ins(LL x, LL v, node *me) {
    	if(me->siz == 1)
    	{
    		node *A = newnode(1, v, x, emp, emp), *B = newnode(1, me->sum, me->val, emp, emp);
    		if(A->val > B->val) swap(A, B);
    		me->ls = A, me->rs = B; 
    //		me->ls = newnode(1, x<me->val ? v : me->sum , min(x, me->val), emp, emp),
    //		me->rs = newnode(1, x<me->val ? me->sum : v, max(x, me->val), emp, emp);
    //		if(x <= me->val)
    //			me = merge(newnode(1, v, x, emp, emp), me);
    //		else
    //			me = merge(me, newnode(1, v, x, emp, emp));
    	}
    	else
    		ins(x, v, x>me->ls->val ? me->rs : me->ls), maintain(me);
    	upd(me);
    }
    
    void era(LL x, node *me) {
    	if(me->siz == 1) return;
    	if(me->ls->siz == 1 && me->ls->val == x)
    		pool[--cnt] = me->ls, pool[--cnt] = me->rs, *me = *me->rs;
    	else if(me->rs->siz == 1 && me->rs->val == x)
    		pool[--cnt] = me->ls, pool[--cnt] = me->rs, *me = *me->ls;
    	else era(x, x>me->ls->val ? me->rs : me->ls), maintain(me);
    	upd(me);
    }
    
    LL num(int x, node *me) {
    	if(me->siz == 1) return (me->val <= x);
    	else return x>=me->ls->val ? me->ls->siz + num(x, me->rs) : num(x, me->ls);
    }
    
    LL sum(int x, node *me) {
    	if(me->siz == 1) return (me->val <= x) * me->sum;
    	else return x>=me->ls->val ? me->ls->sum + sum(x, me->rs) : sum(x, me->ls);
    }
    
    namespace nbBIT {
    	void ins(int x, int y, int v) {
    		for(; x<=n; x += (x&(-x))) ins(y, v, root[x]);
    	}
    	void del(int x, int y) {
    		for(; x<=n; x += (x&(-x))) era(y, root[x]);
    	}
    	LL num_(int p, int x, int y) {
    		LL res = 0ll;
    		for(; p; p -= (p&(-p))) res += (num(y, root[p]) - num(x-1, root[p]));
    		return res;
    	}
    	LL sum_(int p, int x, int y) {
    		LL res = 0ll;
    		for(; p; p -= (p&(-p))) res += (sum(y, root[p]) - sum(x-1, root[p]));
    		return res;
    	}
    	LL num(int l, int r, int x, int y) {
    		if(x>y) return 0ll;
    		return num_(r, x, y) - num_(l-1, x, y);
    	}
    	LL sum(int l, int r, int x, int y) {
    		if(x>y) return 0ll;
    		return sum_(r, x, y) - sum_(l-1, x, y);
    	}
    }
    
    int main() {
    	
    	emp = new node(0, 0, 0, NULL, NULL);
    	for(int i=0; i<SZ; ++i) pool[i] = &t[i];
    	scanf("%d%d", &n, &m);
    	for(int i=1; i<=n; ++i) root[i] = newnode(1, 0, INF, emp, emp);
    	
    	for(int i=1; i<=n; ++i) {
    		scanf("%d%d", &a[i], &v[i]);
    		ans += bit1.ask(a[i]+1, n) * v[i] % mo;
    		ans %= mo;
    		ans += bit2.ask(a[i]+1, n) % mo;
    		ans %= mo;
    		
    		bit1.ins(a[i], 1);
    		bit2.ins(a[i], v[i]);
    		
    		nbBIT::ins(i, a[i], v[i]); 
    	}
    ////	cout << "# " << ans << '
    ';
    //	// suck it up
    //	// suck, it, up 
    	while(m--)
    	{
    		int x, y;
    		scanf("%d%d", &x, &y);
    		if(x>y) swap(x,y);
    		if(x == y) {
    			cout << ans << '
    ';
    			continue;
    		}
    		int l = x+1, r = y-1;
    		if(l<=r)
    		{
    			// 减去以 x 为首的逆序对
    			ans -= nbBIT::num(l, r, 1, a[x]-1) * v[x] % mo;
    			ans -= nbBIT::sum(l, r, 1, a[x]-1) % mo;
    			ans %= mo;
    			// 加上以 x 为尾的逆序对
    			ans += nbBIT::num(l, r, a[x]+1, n) * v[x] % mo;
    			ans += nbBIT::sum(l, r, a[x]+1, n);
    			ans %= mo;
    			// 减去以 y 为尾的逆序对
    			ans -= nbBIT::num(l, r, a[y]+1, n) * v[y] % mo;
    			ans -= nbBIT::sum(l, r, a[y]+1, n) % mo;
    			ans %= mo;
    			// 加上以 y 为首的逆序对
    			ans += nbBIT::num(l, r, 1, a[y]-1) * v[y] % mo;
    			ans += nbBIT::sum(l, r, 1, a[y]-1) % mo; 
    			ans %= mo;
    		}
    		if(a[x] > a[y]) ans -= (v[x] + v[y]) % mo;
    		else ans += (v[x] + v[y]) % mo;
    		
    		nbBIT::del(x, a[x]), nbBIT::del(y, a[y]);
    		swap(a[x], a[y]), swap(v[x], v[y]);
    		nbBIT::ins(x, a[x], v[x]), nbBIT::ins(y, a[y], v[y]);
    		
    		ans = (ans%mo + mo) % mo;
    		cout << ans << '
    ';
    	}
    	// this is life ( wow )
    	return 0;
    }
    

    CQOI2011 动态逆序对

    上面那道题的弱化版, 直接写。

    开玩笑的, 那道题只有删除, 且看上去就是个三维偏序, 用 CDQ 应该常数小写, 以后写吧(x

  • 相关阅读:
    CS231n笔记 Lecture 4 Introduction to Neural Networks
    CS231n笔记 Lecture 3 Loss Functions and Optimization
    CS231n笔记 Lecture 1 Introduction
    LeetCode
    Python备忘录
    Celery简介
    SaltStack error: No module named 'salt'
    IO模型
    TCP协议的三次握手和四次分手
    第一章:正则表达式
  • 原文地址:https://www.cnblogs.com/tztqwq/p/14313191.html
Copyright © 2011-2022 走看看