题面
也就是说, 随机序列RMQ.((n le 8388608), (m le 8*10^6))
解法
我写了笛卡尔树+tarjan
然而听神仙说, 因为数据随机, 建完树暴力找lca就行, 跑的飞快...吊打std...
还有题解, 真是神仙做法...
设 (p_i) 表示比 (a_i) 大的前一个数所在的位置,那么 p 构成了一棵树。
若我们需要查询 [l, r] 的答案,只需找到 r 在这棵树上不小于 l 的祖先。于是我们可以按照 l
从大到小排序,一边向上查询祖先一边路径压缩(类似并查集)。
由于树上的每条边至多被压缩一次,复杂度 O(n) 。
我的代码:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll;
//---------------------------------------
int n,m;
int gen,p1,p2;
int number(){
gen=(1LL*gen*p1)^p2;
return (gen&(n-1))+1;
}
const int nsz=8388700;
int a[nsz],ans[nsz];
struct tnd{int ch[2];}car[nsz];
int rt,pc=0;
int stk[nsz],top=0;
void build(){
rep(i,1,n){
while(top&&a[stk[top]]<a[i])car[i].ch[0]=stk[top--];
car[stk[top]].ch[1]=i;
stk[++top]=i;
}
rt=stk[1],pc=n;
}
struct tq{int t,pr;}qu[nsz*2];
int hd[nsz],pq=1;
void adde(int f,int t){qu[++pq]=(tq){t,hd[f]};hd[f]=pq;}
void adddb(int f,int t){adde(f,t);adde(t,f);}
int fa[nsz];
void init(){rep(i,1,n)fa[i]=i;}
void merge(int a,int b){fa[b]=a;}
int find(int p){return p==fa[p]?p:fa[p]=find(fa[p]);}
int vi[nsz];
void tar(int p){
vi[p]=1;
int v;
rep(i,0,1){
v=car[p].ch[i];
if(v==0)continue;
tar(v);
merge(p,v);
}
for(int i=hd[p];i;i=qu[i].pr){
if(vi[qu[i].t])
ans[i/2]=find(qu[i].t);
}
}
int main() {
// freopen("max.in", "r", stdin);
// freopen("max.out", "w", stdout);
scanf("%d%d", &n, &m);
scanf("%d%d%d", &gen, &p1, &p2);
for (int i = 1; i <= n; ++i)
a[i] = number();
int l,r;
for (int i = 1; i <= m; ++i) {
l = number(), r = number();
if (l > r) swap(l,r);
adddb(l,r);
}
build();
init();
tar(rt);
ll sum = 0;
for (int i = 1; i <= m; ++i) {
sum=(sum+a[ans[i]])%p2;
}
sum=sum*p1%p2;
printf("%lld
", sum);
}
std:
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int N = 1e7 + 5;
int n, m;
int gen, cute1, cute2;
int number() {
gen = (1LL * gen * cute1) ^ cute2;
return (gen & (n - 1)) + 1;
}
int hd[N], nxt[N], id[N], to[N], cnt;
int ans[N], a[N], p[N], q[N];
int add(int x, int y, int i) {
++cnt;
nxt[cnt] = hd[x];
to[cnt] = y;
id[cnt] = i;
hd[x] = cnt;
}
int getfa(int x, int y) {
int fa = x;
for (int i = x; i; i = p[i])
if (p[i] < y || p[i] == i) {
fa = i;
break;
}
for (int j, i = x; i != fa; i = j) {
j = p[i], p[i] = fa;
}
return fa;
}
int main() {
freopen("max.in", "r", stdin);
freopen("max.out", "w", stdout);
scanf("%d%d", &n, &m);
scanf("%d%d%d", &gen, &cute1, &cute2);
for (int i = 1; i <= n; ++i)
a[i] = number();
for (int i = 1; i <= m; ++i) {
int l = number(), r = number();
if (l > r) swap(l, r);
add(l, r, i);
}
double t1;
fprintf(stderr, "%lf
", t1 = (double)clock()/CLOCKS_PER_SEC);
int ind = 0;
for (int i = 1; i <= n; ++i) {
while (ind && a[q[ind]] <= a[i]) --ind;
if (ind) p[i] = q[ind];
else p[i] = i;
q[++ind] = i;
}
for (int i = n; i; --i) {
for (int j = hd[i]; j; j = nxt[j])
ans[id[j]] = a[getfa(to[j], i)];
}
fprintf(stderr, "%lf
", (double)clock()/CLOCKS_PER_SEC - t1);
int sum = 0;
for (int i = 1; i <= m; ++i)
(sum += 1LL * ans[i] * cute1 % cute2) %= cute2;
printf("%d
", sum);
}