zoukankan      html  css  js  c++  java
  • poj 2442 -- Sequence

    Sequence
    Time Limit: 6000MS   Memory Limit: 65536K
    Total Submissions: 7018   Accepted: 2265

    Description

    Given m sequences, each contains n non-negative integer. Now we may select one number from each sequence to form a sequence with m integers. It's clear that we may get n ^ m this kind of sequences. Then we can calculate the sum of numbers in each sequence, and get n ^ m values. What we need is the smallest n sums. Could you help us?

    Input

    The first line is an integer T, which shows the number of test cases, and then T test cases follow. The first line of each case contains two integers m, n (0 < m <= 100, 0 < n <= 2000). The following m lines indicate the m sequence respectively. No integer in the sequence is greater than 10000.

    Output

    For each test case, print a line with the smallest n sums in increasing order, which is separated by a space.

    Sample Input

    1
    2 3
    1 2 3
    2 2 3
    

    Sample Output

    3 3 4

    思路:
        1.s1[M] 表示第1组n个数,按递增排序。s2[M]表示第2组n个数,按递增排序
        2.sum[i] = s2[0] + s1[i] i ∈ 0,1,2,3……n-1 并将sum[]数组建最大堆。这里我用优先队列实现
        3.计算ans = s2[i] + s1[j] i ∈ 1,2,3……n-1, j ∈ 0,1,2,3……n-1 . 其中当i = 1时,j依次取j的范围,i = 2时,j依次取j的范围 ……
        4.每次计算的 ans >= 堆顶 则退出此次,进行下一次,否则的话将堆顶删除将ans加到堆中。
        5.将堆转换成s1数组,继续输入第三组到s2数组。重复上述步骤。 则最后堆里的内容就是最后要求的结果。

     1 /*======================================================================
     2  *           Author :   kevin
     3  *         Filename :   Sequence.cpp
     4  *       Creat time :   2014-07-23 09:27
     5  *      Description :
     6 ========================================================================*/
     7 #include <iostream>
     8 #include <algorithm>
     9 #include <cstdio>
    10 #include <cstring>
    11 #include <queue>
    12 #include <cmath>
    13 #define clr(a,b) memset(a,b,sizeof(a))
    14 #define M 2005
    15 using namespace std;
    16 int s1[M],s2[M],sum[M];
    17 priority_queue<int>que;
    18 int main(int argc,char *argv[])
    19 {
    20     int cas;
    21     scanf("%d",&cas);
    22     while(cas--){
    23         int n,m;
    24         scanf("%d%d",&n,&m);
    25         for(int i = 0; i < m; i++){
    26             scanf("%d",&s1[i]);
    27         }
    28         sort(s1,s1+m);
    29         for(int i = 1; i < n; i++){
    30             for(int j = 0; j < m; j++){
    31                 scanf("%d",&s2[j]);
    32             }
    33             sort(s2,s2+m);
    34             for(int j = 0; j < m; j++){
    35                 sum[j] = s2[0] + s1[j];
    36                 que.push(sum[j]);
    37             }
    38             int mmax = 0;
    39             for(int k = 1; k < m; k++){
    40                 for(int j = 0; j < m; j++){
    41                     mmax = s2[k] + s1[j];
    42                     if(mmax >= que.top()) break;
    43                     que.pop();
    44                     que.push(mmax);
    45                 }
    46             }
    47             int cnt = 0;
    48             while(!que.empty()){
    49                 s1[cnt++] = que.top();
    50                 que.pop();
    51             }
    52             sort(s1,s1+cnt);
    53         }
    54         for(int i = 0; i < m; i++){
    55             if(i)
    56                 printf(" %d",s1[i]);
    57             else printf("%d",s1[i]);
    58         }
    59         printf("
    ");
    60     }
    61     return 0;
    62 }
    View Code
  • 相关阅读:
    Algorithm --> 最长回文子串
    Algorithm --> 筛法求素数
    c++ --> const关键字总结
    c++ --> 友元函数
    c++ --> static关键字总结
    c++ --> 父类与子类间的继承关系
    c++ --> 操作符重载
    Java设计模式应用——观察者模式
    Ignite集群管理——基于静态IP的节点发现
    线性回归的应用——容量预测
  • 原文地址:https://www.cnblogs.com/ubuntu-kevin/p/3863153.html
Copyright © 2011-2022 走看看