zoukankan      html  css  js  c++  java
  • Alyona and a tree CodeForces

    大意: 给定有根树, 每个点$x$有权值$a_x$, 对于每个点$x$, 求出$x$子树内所有点$y$, 需要满足$dist(x,y)<=a_y$.

    刚开始想错了, 直接打线段树合并了.....因为范围是$long space long$常数极大, 空间很可能会被卡, 不过竟然过了. 实际上本题每个点对树链上的贡献是单调的, 直接二分就行了

    放一下线段树合并代码

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc tr[o].l
    #define rc tr[o].r
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    //head
    
    
    
    
    const int N = 2e5+10;
    int n, tot, a[N], rt[N], ans[N];
    struct _ {int to,w;};
    vector<_> g[N];
    ll d[N], L, R;
    struct {int l,r,sum;} tr[N<<6];
    typedef int&& dd;
    
    int merge(int x, int y) {
    	if (!x||!y) return x+y;
    	tr[x].l=merge(tr[x].l,tr[y].l);
    	tr[x].r=merge(tr[x].r,tr[y].r);
    	tr[x].sum+=tr[y].sum;
    	return x;
    }
    int query(int o, ll l, ll r, ll ql, ll qr) {
    	if (!o||ql<=l&&r<=qr) return tr[o].sum;
    	int ans = 0;
    	if (mid>=ql) ans+=query(ls,ql,qr);
    	if (mid<qr) ans+=query(rs,ql,qr);
    	return ans;
    }
    void update(int &o, ll l, ll r, ll x) {
    	if (!o) o=++tot;
    	++tr[o].sum;
    	if (l==r) return;
    	if (mid>=x) update(ls,x);
    	else update(rs,x);
    }
    void dfs(int x) {
    	for (auto &&e:g[x]) d[e.to]=d[x]+e.w,dfs(e.to);
    	L = min(L, d[x]), R = max(R, d[x]);
    	L = min(L, d[x]-a[x]), R = max(R, d[x]-a[x]);
    }
    void solve(int x) {
    	for (auto &&e:g[x]) { 
    		solve(e.to); rt[x]=merge(rt[x],rt[e.to]);
    	}
    	ans[x] = query(rt[x],L,R,L,d[x]);
    	update(rt[x],L,R,d[x]-a[x]);
    }
    
    int main() {
    	int &&t = n;
    	scanf("%d", &n);
    	REP(i,1,n) scanf("%d", a+i);
    	REP(i,2,n) {
    		int f, w;
    		scanf("%d%d", &f, &w);
    		g[f].pb({i,w});
    	}
    	dfs(1),solve(1);
    	REP(i,1,n) printf("%d ", ans[i]);hr;
    }
    
  • 相关阅读:
    需求变更的种类及应对方式
    SQL Server中连接远程表、查询其它服务器的数据、导入或导出到其它Sql Server服务器数据
    在IE9中MSWC.BrowserType组件无法识别Cookie的问题
    优秀软件的几个重要标准
    对待代码的态度反应着对待自己的态度
    应对企业不断变化的系统
    在SQL中插入®特殊字符
    如何让领导认识到测试的重要性,在沟通时要注意的几点
    男人要补肾,强肾健脑对能持久做程序
    你可能不知道的Visual Studio 2010使用技巧(VS2010的秘密)
  • 原文地址:https://www.cnblogs.com/uid001/p/10597609.html
Copyright © 2011-2022 走看看