大意: n个点, $i$和$j$之间可以连$c_{ij}$种无向边, 求连成连通图的方案数.
设$f_i$为状态$i$时连通图方案, $g_i$为状态$i$时所有方案.
有$f[i]=g[i]-sumlimits_{j}f[j]g[iwedge j]$, j为包含i的最低位的所有i的子集
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 16; int n; int a[N][N], f[1<<N], g[1<<N]; int main() { scanf("%d", &n); REP(i,0,n-1) REP(j,0,n-1) scanf("%d",a[i]+j); int mx = (1<<n)-1; REP(k,0,mx) { f[k] = 1; REP(i,0,n-2) if (k>>i&1) { REP(j,i+1,n-1) if (k>>j&1) { f[k] = (ll)f[k]*(a[i][j]+1)%P; } } g[k] = f[k]; for (int i=k^k&-k,j=i; j; (--j)&=i) { f[k] = (f[k]-(ll)g[j]*f[k^j])%P; } } int ans = f[mx]; if (ans<0) ans+=P; printf("%d ", ans); }