大意:给定长$n$的字符串$s$, 只含'a','b','?', '?'可以替换为任意字符, 在给定长$t$的字符串, "ababab...", 求替换尽量少的'?', 使得$s$能匹配最多的不相交的$t$.
先不考虑最少替换的限制, 要尽量多的匹配$t$, 可以先预处理出可以匹配的位置, 然后$dp$.
要求最小的话, 每次$dp$转移时可能有多个转移点, 对每个dp值维护一个前缀最小值即可.
#include <iostream> #include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, m; char s[N]; int a[2][N], b[2][N], f[N], dp[N], w[N], c[N]; void init() { REP(i,1,n) { a[0][i]=a[0][i-1],a[1][i]=a[1][i-1]; b[0][i]=b[0][i-1],b[1][i]=b[1][i-1]; if (s[i]=='a') a[i&1][i]=max(a[i&1][i],i); else if (s[i]=='b') b[i&1][i]=max(b[i&1][i],i); w[i]=w[i-1]+(s[i]=='?'); } } int main() { scanf("%d%s%d", &n, s+1, &m); init(); REP(i,m,n) { if (m&1) f[i]=b[i&1][i]<=i-m&&a[i&1^1][i]<=i-m; else f[i]=a[i&1][i]<=i-m&&b[i&1^1][i]<=i-m; } REP(i,m,n) { if (f[i]) { dp[i] = dp[i-m]+1; c[i] = c[i-m]+w[i]-w[i-m]; if (dp[i]==dp[i-1]) c[i]=min(c[i],c[i-1]); } else c[i]=c[i-1]; dp[i] = max(dp[i-1], dp[i]); } int ans = INF; REP(i,1,n) if (dp[i]==dp[n]) ans=min(ans,c[i]); printf("%d ", ans); }