You are given an array $a_1,a_2,…,a_n$. All $a_i$ are pairwise distinct.
Let's define function $f(l,r)$ as follows:
- let's define array $b_1,b_2,…,b_{r-l+1}$, where $b_i=a_{l-1+i}$;
- sort array $b$ in increasing order;
- result of the function $f(l,r)$ is $sumlimits_{i=1}^{r-l+1}b_icdot i$.
Calculate $Bigg(sumlimits_{1le lle rle n}f(l,r)Bigg )mod(10^9+7)$, i.e. total sum of $f$ for all subsegments of $a$ modulo $10^9+7$.
可以得到$a_x$的贡献为
$sumlimits_{substack{a_i<a_x\ i<x}} icdot (n-x+1)+sumlimits_{substack{a_i<a_x\ i>x}}xcdot (n-i+1)+xcdot (n-x+1)$
#include <iostream>
#include <cstdio>
#include <algorithm>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
using namespace std;
typedef long long ll;
const int N = 1e6+10, P = 1e9+7;
int n, a[N], b[N];
ll c[N], cnt[N];
void add(int x, int v) {
for (; x<=n; x+=x&-x) c[x]+=v;
}
ll query(int x) {
ll r = 0;
for (; x; x^=x&-x) r+=c[x];
return r%P;
}
int main() {
scanf("%d", &n);
REP(i,1,n) scanf("%d",a+i),b[i]=a[i];
sort(b+1,b+1+n);
REP(i,1,n) a[i]=lower_bound(b+1,b+1+n,a[i])-b;
REP(i,1,n) {
cnt[i] += query(a[i])*(n-i+1)%P;
add(a[i], i);
}
REP(i,1,n) cnt[i] += (ll)i*(n-i+1)%P, c[i] = 0;
PER(i,1,n) {
cnt[i] += query(a[i])*i%P;
add(a[i], (n-i+1));
}
ll ans = 0;
REP(i,1,n) ans+=cnt[i]*b[a[i]]%P;
printf("%lld
", ans%P);
}