zoukankan      html  css  js  c++  java
  • 牛客 40F 珂朵莉的约数 (莫队)

    珂朵莉给你一个长为n的序列,有m次查询 

    每次查询给两个数l,r

    设s为区间[l,r]内所有数的乘积 

    求s的约数个数mod 1000000007

    直接莫队暴力维护复杂度是$O(8msqrt{m})$.

    看了官方题解, 序列权值比较小, 权值<1000的素数暴力维护, >1000的素数最多只有1个, 用莫队维护, 这样能优化掉8的常数.

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    
    const int N = 1e6+10;
    int n, m, sqn;
    int gpf[N], ans[N], blo[N];
    int inv[N];
    vector<pii> a[N];
    struct _ {
        int l,r,id;
        bool operator < (const _ & rhs) const {
             return blo[l]^blo[rhs.l]?l<rhs.l:blo[l]&1?r<rhs.r:r>rhs.r;
        }
    } e[N];
    
    int cnt[N], now=1;
    void upd(int x, int v) {
    	for (auto &&t:a[x]) {
    		now = (ll)now*inv[cnt[t.x]+1]%P;
    		cnt[t.x] += v*t.y;
    		now = (ll)now*(cnt[t.x]+1)%P;
    	}
    }
    
    int main() {
    	scanf("%d%d", &n, &m),sqn=pow(n,0.55);
    	inv[1] = 1;
    	REP(i,2,N-1) inv[i]=(ll)inv[P%i]*(P-P/i)%P;
    	gpf[1] = 1;
    	REP(i,1,N-1) if (!gpf[i]) for (int j=i;j<N;j+=i) gpf[j]=i;
    	REP(i,1,n) { 
    		int t;
    		scanf("%d", &t);
    		while (t!=1) {
    			int x = gpf[t], y = 0;
    			while (t%x==0) t/=x,++y;
    			a[i].pb(pii(x,y));
    		}
    		blo[i]=i/sqn;
    	}
    	REP(i,1,m) scanf("%d%d",&e[i].l,&e[i].r),e[i].id=i;
    	sort(e+1,e+1+m);
    	int ql=1, qr=0;
    	REP(i,1,m) {
    		while (ql>e[i].l) upd(--ql,1);
    		while (qr<e[i].r) upd(++qr,1);
    		while (ql<e[i].l) upd(ql++,-1);
    		while (qr>e[i].r) upd(qr--,-1);
    		ans[e[i].id] = now;
    	}
    	REP(i,1,m) printf("%d
    ",ans[i]);
    }
    
  • 相关阅读:
    ciancd开源
    Deployment Pipeline using Docker, Jenkins, Java
    Jenkins与.NET项目
    设置jenkins代理
    p4 是否能自动merge
    jenkins和docker 使用docker作为slave
    jenkins插件 build timeout和build timestamp
    jenkins 插件开发资料
    jenkins2 pipeline 语法快速参考
    jenkins2 pipeline插件的10个最佳实践
  • 原文地址:https://www.cnblogs.com/uid001/p/10920576.html
Copyright © 2011-2022 走看看