zoukankan      html  css  js  c++  java
  • Wannafly挑战赛23

    B. 游戏

    大意: $n$堆石子, 第$i$堆初始$a_i$, 每次只能选一堆, 假设一堆个数$x$, 只能取$x$的约数, 求先手第一步必胜取法.

    SG入门题, 预处理出所有$SG$值. 先手要必胜必须满足留给后手的异或值为0.

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    
    const int N = 1e5+10;
    int n, a[N], sg[N], vis[N];
    vector<int> fac[N];
    
    void init() {
    	REP(i,1,N-1) for(int j=i;j<N;j+=i) fac[j].pb(i);
    	REP(i,1,N-1) {
    		for (int j:fac[i]) vis[sg[i-j]]=i;
    		REP(j,0,N-1) if (vis[j]!=i) {
    			sg[i] = j; break;
    		}
    	}
    }
    
    int main() {
    	init();
    	scanf("%d", &n);
    	int s = 0;
    	REP(i,1,n) { 
    		scanf("%d", a+i);
    		s ^= sg[a[i]];
    	}
    	if (!s) return puts("0"),0;
    	int ans = 0;
    	REP(i,1,n) {
    		for (int x:fac[a[i]]) {
    			if (!(s^sg[a[i]]^sg[a[i]-x])) ++ans;
    		}
    	}
    	printf("%d
    ", ans);
    }
    

    C.收益

    大意: 要融资$L$元$n$个人, 融资成功收益$M$, 第$i$个客户有$p_i$概率出钱$m_i$元, 若融资成功要付$m_ir_i$元, 求最后期望收益.

    DP求出最终得到$x$元的概率及期望花费, 然后统计答案.

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    
    const int N = 111;
    int n, L, M;
    int m[N], r[N], p[N];
    int f[2][500100], g[2][500100];
    
    int main() {
    	scanf("%d%d%d", &n, &L, &M);
    	int sum = 0, inv100 = inv(100);
    	REP(i,1,n) { 
    		scanf("%d%d%d",m+i,r+i,p+i);
    		sum += m[i];
    		r[i] = (ll)m[i]*r[i]%P*inv100%P;
    		p[i] = (ll)p[i]*inv100%P;
    	}
    	int cur = 0;
    	f[cur][0] = 1;
    	REP(i,1,n) {
    		cur ^= 1;
    		REP(j,0,sum) {
    			int nxt = j-m[i]>=0?j-m[i]:sum+1;
    			f[cur][j] = ((ll)f[!cur][nxt]*p[i]+(ll)f[!cur][j]*(1-p[i]))%P;
    			g[cur][j] = (((ll)g[!cur][nxt]+(ll)r[i]*f[!cur][nxt])%P*p[i]+(ll)g[!cur][j]*(1-p[i]))%P;
    		}
    	}
    	int ans = 0;
    	REP(i,L,sum) ans = (ans+(ll)f[cur][i]*M-g[cur][i])%P;
    	if (ans<0) ans += P;
    	printf("%d
    ", ans);
    }
    

    D.漂亮的公园

    给定树, 点$i$颜色为$c[i]$, 每次询问所有颜色为$x$的点到颜色为$y$的点的最大距离.

    结论: 对于树上点集$S$, $S$内距离最远的两点为$x,y$, 则其他点$u$到点集$S$的最远距离必然是$u$到$x$或$u$到$y$.

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <queue>
    #include <map>
    #define REP(i,a,b) for(int i=a;i<=b;++i)
    using namespace std;
    const int N = 1e5+10;
    int n, q, c[N], sz[N], dep[N];
    int fa[N], son[N], top[N];
    int f[N][2];
    vector<int> g[N];
    int b[N];
    
    void dfs(int x, int d, int f) {
        sz[x]=1,fa[x]=f,dep[x]=d;
        for (int y:g[x]) if (y!=f) {
            dfs(y,d+1,x),sz[x]+=sz[y];
            if (sz[y]>sz[son[x]]) son[x]=y;
        }
    }
    void dfs(int x, int tf) {
        top[x]=tf;
        if (son[x]) dfs(son[x],tf);
        for (int y:g[x]) if (!top[y]) dfs(y,y);
    }
    int lca(int x, int y) {
        while (top[x]!=top[y]) {
            if (dep[top[x]]<dep[top[y]]) swap(x,y);
            x=fa[top[x]];
        }
        return dep[x]<dep[y]?x:y;
    }
    int dis(int x, int y) {
    	if (!x||!y) return 0;
    	return dep[x]+dep[y]-2*dep[lca(x,y)];
    }
    
    void upd(int x) {
    	int &A = f[c[x]][0], &B = f[c[x]][1];
    	if (!A) A = x;
    	else if (!B) B = x;
    	else {
    		int d1 = dis(A,B), d2 = dis(A,x), d3 = dis(B,x);
    		if (d2>d1&&d2>d3) { 
    			if (d2>d3) B = x;
    			else A = x;
    		}
    		else if (d3>d1) A = x;
    	}
    }
    
    int main() {
    	scanf("%d%d", &n, &q);
    	REP(i,1,n) scanf("%d",c+i),b[i]=c[i];
    	sort(b+1,b+1+n),*b=unique(b+1,b+1+n)-b-1;
    	REP(i,1,n) c[i]=lower_bound(b+1,b+1+*b,c[i])-b;
    	REP(i,2,n) {
    		int u, v;
    		scanf("%d%d", &u, &v);
    		g[u].push_back(v);
    		g[v].push_back(u);
    	}
    	dfs(1,0,0),dfs(1,1);
    	REP(i,1,n) upd(i);
    	while (q--) {
    		int x, y;
    		scanf("%d%d", &x, &y);
    		int xx=lower_bound(b+1,b+1+*b,x)-b;
    		int yy=lower_bound(b+1,b+1+*b,y)-b;
    		if (b[xx]!=x||b[yy]!=y) {
    			puts("0"); continue;
    		}
    		x = xx, y = yy;
    		int ans = 0;
    		REP(i,0,1) REP(j,0,1) ans = max(ans, dis(f[x][i],f[y][j]));
    		printf("%d
    ", ans);
    	}
    }
    

    E. 排序

    大意: 初始有一个长为$2n$的排列, 随机打乱后, 将奇数位升序排列, 求期望逆序对. $nle 5e7$

    打个表发现答案是$frac{7n^2-n}{12}$, 官方题解如下

    F 生成树计数 留坑

  • 相关阅读:
    第七周作业
    人月神话之没有银弹
    第六周作业
    第五周作业
    第四周作业
    第三周作业
    人月神话之沟通
    第二周作业
    第一周作业
    第八周作业
  • 原文地址:https://www.cnblogs.com/uid001/p/10972827.html
Copyright © 2011-2022 走看看