zoukankan      html  css  js  c++  java
  • 2019杭电多校一 L. Sequence (NTT)

    大意: 给定序列$a$, 给定$m$个操作, 求最后序列每一项的值.

    一共$3$种操作, 其中第$k$种操作将序列变为$b_i=sumlimits_{j=i-kx}a_j$, $(0le x,1le jle ile n)$

     

    可以发现$sum b_ix^i=(sum a_i x^i)(sum x^{ki})$, 转化为求$(sum x^{ki})^{cnt}$

    直接快速幂会$T$, 注意到$(sum x^{ki})^n=suminom{n-1+i}{i}x^{ki}$, 所以可以只求一次卷积

    #include <iostream>
    #include <cstdio>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    using namespace std;
    typedef long long ll;
    typedef int* poly;
    const int N = 2e6+10, P = 998244353, G = 3, Gi = 332748118;
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    int n,m,lim,l,A[N],B[N],R[N];
    int fac[N],ifac[N];
    void init(int n) {
        for (lim=1,l=0; lim<=n; lim<<=1,++l) ;
        REP(i,0,lim-1) R[i]=(R[i>>1]>>1)|((i&1)<<(l-1));
    }
    void NTT(poly J, int tp=1) {
        REP(i,0,lim-1) if (i<R[i]) swap(J[i],J[R[i]]);
        for (int j=1; j<lim; j<<=1) {
            ll T = qpow(tp==1?G:Gi,(P-1)/(j<<1));
            for (int k=0; k<lim; k+=j<<1) {
                ll t = 1;
                for (int l=0; l<j; ++l,t=t*T%P) {
                    int y = t*J[k+j+l]%P;
                    J[k+j+l] = (J[k+l]-y+P)%P;
                    J[k+l] = (J[k+l]+y)%P;
                }
            }
        }
        if (tp==-1) {
            ll inv = qpow(lim, P-2);
            REP(i,0,lim-1) J[i]=(ll)inv*J[i]%P;
        }
    }
    poly mul(poly a, poly b) {
    	init(n*2);
    	REP(i,0,lim-1) A[i]=B[i]=0;
    	REP(i,0,n-1) A[i]=a[i];
    	REP(i,0,n-1) B[i]=b[i];
    	NTT(A),NTT(B);
    	poly c(new int[lim]);
    	REP(i,0,lim-1) c[i]=(ll)A[i]*B[i]%P;
    	NTT(c,-1);
    	REP(i,0,lim-1) if (c[i]<0) c[i]+=P;
    	return c;
    }
    
    int C(int n, int m) {
    	if (n<m) return 0;
    	return (ll)fac[n]*ifac[m]%P*ifac[n-m]%P;
    }
    
    int main() {
    	fac[0]=ifac[0]=1;
    	REP(i,1,N-1) fac[i]=(ll)fac[i-1]*i%P;
    	ifac[N-1]=qpow(fac[N-1],P-2);
    	PER(i,1,N-2) ifac[i]=(ll)ifac[i+1]*(i+1)%P;
    	int t;
    	scanf("%d", &t);
    	while (t--) {
    		scanf("%d%d", &n, &m);
    		poly a(new int[n]);
    		REP(i,0,n-1) scanf("%d", a+i);
    		int cnt[4]{};
    		REP(i,1,m) {
    			int c;
    			scanf("%d", &c);
    			++cnt[c];
    		}
    		REP(i,1,3) if (cnt[i]) {
    			poly f(new int[n]());
    			for (int j=0;j*i<n;++j) {
    				f[j*i] = C(cnt[i]-1+j,j);
    			}
    			a = mul(a,f);
    		}
    		ll ans = 0;
    		REP(i,0,n-1) ans ^= (i+1ll)*a[i];
    		printf("%lld
    ", ans);
    	}
    }
    
  • 相关阅读:
    如何通过关键词匹配统计其出现的频率
    好玩的SQL
    如何用Dummy实例执行数据库的还原和恢复
    如何查找特定目录下最大的文件及文件夹
    《Administrator's Guide》之Managing Memory
    Oracle如何实现从特定组合中随机读取值
    如何用分析函数找出EMP表中每个部门工资最高的员工
    Oracle之DBMS_RANDOM包详解
    RAC碎碎念
    如何利用Direct NFS克隆数据库
  • 原文地址:https://www.cnblogs.com/uid001/p/11227504.html
Copyright © 2011-2022 走看看