zoukankan      html  css  js  c++  java
  • 睡前1小时数学系列之-同余及其证明

      前言:
    同余,一个很玄学的数学概念,在弄这个概念前。整除一定要看好。因为这个证明,我一点都不喜欢。在没弄好整除的情况下,这个一点都不好弄。

    正文:

    什么是同余,顾名思义,余下来的。和被除的关系。官方的来说,设a,b两个整数,且它们的差(a-b)能被m整除,我们就称a就模m来说同余于b  或者说  a和b关于模m同余。记作:  a≡b(mod m);  它意味着  a-b==m*k  (这里k为某个整数);  这个也等价于这个表达式:m|(a-b);

    举个栗子:32≡2(mod 5)这个时候k就是6.

    关于同余的性质:

    1,自反性  a≡a(mod m)     : 因为 m|(a-a)==  m|0  , m|0一定成立  。

    2,对称性(其实我觉得这个对称这个叫法有点扯淡) if a≡b(mod m)  than   b≡a(mod m)   ;因为  m|(a-b)  所以m|(b-a)

    3,传递性: if a≡b(mod m)  &&  b≡c (mod m)    than  a≡c (mod m)   ;   

        因为哦:  m|(a-b)  and  m|(b-c)

        所以: m|(a-b)*1+(b-c)*1    (整除的性质)

         所以 m|(a-c)    so :   a≡c(mod m)

    4,同乘性:   if   a≡b(mod m)    than  a*c≡b*c (mod m)     ;

        因为哦: m|(a-b)    ==    m| c*(a-b)     (这个要好好的想想因子的关系)

        so:    m|  a*c-b*c  

        so:    a*c≡ b*c  (mod  m)

    5,同乘性2 :  if   a≡b (mod m)   &&    c≡d(mod m)    than    a*c≡b*d (mod m )

    因为哦:   m|(a-b)  &&  m|(c-d)

      because:    ac-bd==ac-bc+bc-bd ==  c(a-b) -  b*(c-b) 

        so      m| ac-bd   ==  m| c(a-b) -  b*(c-b) ;

        so :    a*c≡b*d(mod m)

     

    这只是#同余#的冰山一角,毕竟。其他性质我还没证明出来、hhhh  小生就是一只蒟蒻不要见怪。。。

    恩就是这样。

     

    后记:

    早睡早起好习惯。    

  • 相关阅读:
    推荐一个c++小巧开源且跨平台的图像解码库
    设计模式---桥接模式
    redis数据结构及其使用场景、持久化、缓存淘汰策略
    mysql------explain工具
    mysql索引数据结构
    java8(2)--- Stream API
    java8(1)--- lambda
    springboot自动装配(2)---实现一个自定义自动装配组件
    springboot自动装配(1)---@SpringBootApplication注解怎么自动装配各种组件
    自己挖的坑跪着也要填完---mapper配置文件和java源文件在同一包下
  • 原文地址:https://www.cnblogs.com/uncle-lu/p/5869739.html
Copyright © 2011-2022 走看看