zoukankan      html  css  js  c++  java
  • 重要的SQL命令列举

    重要的 SQL 命令

    • SELECT - 从数据库中提取数据
    • UPDATE - 更新数据库中的数据
    • DELETE - 从数据库中删除数据
    • INSERT INTO - 向数据库中插入新数据
    • CREATE DATABASE - 创建新数据库
    • ALTER DATABASE - 修改数据库
    • CREATE TABLE - 创建新表
    • ALTER TABLE - 变更(改变)数据库表
    • DROP TABLE - 删除表
    • CREATE INDEX - 创建索引(搜索键)
    • DROP INDEX - 删除索引

    快速参考

    SQL 语句 语法
    AND / OR SELECT column_name(s)
    FROM table_name
    WHERE condition
    AND|OR condition
    ALTER TABLE ALTER TABLE table_name
    ADD column_name datatype

    or

    ALTER TABLE table_name
    DROP COLUMN column_name

    AS (alias) SELECT column_name AS column_alias
    FROM table_name

    or

    SELECT column_name
    FROM table_name AS table_alias

    BETWEEN SELECT column_name(s)
    FROM table_name
    WHERE column_name
    BETWEEN value1 AND value2
    CREATE DATABASE CREATE DATABASE database_name
    CREATE TABLE CREATE TABLE table_name
    (
    column_name1 data_type,
    column_name2 data_type,
    column_name2 data_type,
    ...
    )
    CREATE INDEX CREATE INDEX index_name
    ON table_name (column_name)

    or

    CREATE UNIQUE INDEX index_name
    ON table_name (column_name)

    CREATE VIEW CREATE VIEW view_name AS
    SELECT column_name(s)
    FROM table_name
    WHERE condition
    DELETE DELETE FROM table_name
    WHERE some_column=some_value

    or

    DELETE FROM table_name
    (Note: Deletes the entire table!!)

    DELETE * FROM table_name
    (Note: Deletes the entire table!!)

    DROP DATABASE DROP DATABASE database_name
    DROP INDEX DROP INDEX table_name.index_name (SQL Server)
    DROP INDEX index_name ON table_name (MS Access)
    DROP INDEX index_name (DB2/Oracle)
    ALTER TABLE table_name
    DROP INDEX index_name (MySQL)
    DROP TABLE DROP TABLE table_name
    GROUP BY SELECT column_name, aggregate_function(column_name)
    FROM table_name
    WHERE column_name operator value
    GROUP BY column_name
    HAVING SELECT column_name, aggregate_function(column_name)
    FROM table_name
    WHERE column_name operator value
    GROUP BY column_name
    HAVING aggregate_function(column_name) operator value
    IN SELECT column_name(s)
    FROM table_name
    WHERE column_name
    IN (value1,value2,..)
    INSERT INTO INSERT INTO table_name
    VALUES (value1, value2, value3,....)

    or

    INSERT INTO table_name
    (column1, column2, column3,...)
    VALUES (value1, value2, value3,....)

    INNER JOIN SELECT column_name(s)
    FROM table_name1
    INNER JOIN table_name2
    ON table_name1.column_name=table_name2.column_name
    LEFT JOIN SELECT column_name(s)
    FROM table_name1
    LEFT JOIN table_name2
    ON table_name1.column_name=table_name2.column_name
    RIGHT JOIN SELECT column_name(s)
    FROM table_name1
    RIGHT JOIN table_name2
    ON table_name1.column_name=table_name2.column_name
    FULL JOIN SELECT column_name(s)
    FROM table_name1
    FULL JOIN table_name2
    ON table_name1.column_name=table_name2.column_name
    LIKE SELECT column_name(s)
    FROM table_name
    WHERE column_nameLIKE pattern
    ORDER BY SELECT column_name(s)
    FROM table_name
    ORDER BY column_name [ASC|DESC]
    SELECT SELECT column_name(s)
    FROM table_name
    SELECT * SELECT *
    FROM table_name
    SELECT DISTINCT SELECT DISTINCT column_name(s)
    FROM table_name
    SELECT INTO SELECT *
    INTO new_table_name [IN externaldatabase]
    FROM old_table_name

    or

    SELECT column_name(s)
    INTO new_table_name [IN externaldatabase]
    FROM old_table_name

    SELECT TOP SELECT TOP number|percent column_name(s)
    FROM table_name
    TRUNCATE TABLE TRUNCATE TABLE table_name
    UNION SELECT column_name(s) FROM table_name1
    UNION
    SELECT column_name(s) FROM table_name2
    UNION ALL SELECT column_name(s) FROM table_name1
    UNION ALL
    SELECT column_name(s) FROM table_name2
    UPDATE UPDATE table_name
    SET column1=value, column2=value,...
    WHERE some_column=some_value
    WHERE SELECT column_name(s)
    FROM table_name
    WHERE column_name operator value

    来源://www.w3cschool.cn/sql/sql-quickref.html

  • 相关阅读:
    pipelinewise 学习二 创建一个简单的pipeline
    pipelinewise 学习一 docker方式安装
    Supercharging your ETL with Airflow and Singer
    ubuntu中使用 alien安装rpm包
    PipelineWise illustrates the power of Singer
    pipelinewise 基于singer 指南的的数据pipeline 工具
    关于singer elt 的几篇很不错的文章
    npkill 一个方便的npm 包清理工具
    kuma docker-compose 环境试用
    kuma 学习四 策略
  • 原文地址:https://www.cnblogs.com/uphold/p/7570364.html
Copyright © 2011-2022 走看看