zoukankan      html  css  js  c++  java
  • Common Subsequence

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    int n , m ;
    int dist[2005][2005];
    char str1[2005];
    char str2[2005];
    
    void dfs()
    {
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= m; j ++)
        {
            if(str1[i] == str2[j])
                dist[i][j] = dist[i-1][j-1]+1;
            else
                dist[i][j] = max(dist[i-1][j] , dist[i][j-1]);
        }
        /*for(int i = 1; i <= n; i ++)
        {
            for(int j = 1; j <= m; j ++)
            {
                cout << dist[i][j] <<" ";
            }
            cout << endl;
        }*/
    
    
    }
    int main()
    {
        while(scanf("%s %s",str1+1 , str2+1)!=EOF)
        {
            n = strlen(str1+1);
            m = strlen(str2+1);
            for(int i = 0; i <= n; i ++)
                dist[i][0] = 0;
            for(int j = 0; j <= m; j ++)
                dist[0][j] = 0;
            dfs();
            printf("%d
    ",dist[n][m]);
        }
        return 0;
    }
  • 相关阅读:
    一些关于"虚拟交易"的有趣文章
    Windows中的消息队列:Message Queuing (MSMQ)
    ATLStyle模板 不用虚函数实现多态
    AIX 下获取系统CPU及内存的使用情况方法
    关于HPUNIX C 兼容性
    Android进阶Acticivity的启动模式
    ViewState & UpdatePanle & ReadOnly属性
    由网站构架演变说起
    '操作必须使用一个可更新的查询'解决方法
    ScriptManager & ClientScriptManager
  • 原文地址:https://www.cnblogs.com/upstart/p/6653093.html
Copyright © 2011-2022 走看看