zoukankan      html  css  js  c++  java
  • Codeforces 976F Minimal k-covering【最大流】

    题意:给一个二分图,存在重边,求使各点度数至少为k(0<=k<=min(d[i]))的最小边集合。

    分析:首先建立一个源点s向二分图左边连边,建立一个汇点e,所有二分图右边的点向e点连边。要使每个点的度数大于等于k,可使流过每个点的流量小于等于d[i]-k。(d[i]为每个点的度数),就可以在建立源点到二分图左边点,和二分图右边点到汇点时开始限制。然后对每个k跑一遍最大流,记录一下剩余的边即是正确答案。

    You are given a bipartite graph G = (U, V, E), U is the set of vertices of the first part, V is the set of vertices of the second part and E is the set of edges. There might be multiple edges.

    Let's call some subset of its edges  k-covering iff the graph  has each of its vertices incident to at least k edges. Minimal k-covering is such a k-covering that the size of the subset  is minimal possible.

    Your task is to find minimal k-covering for each , where minDegreeis the minimal degree of any vertex in graph G.

    Input

    The first line contains three integers n1n2 and m (1 ≤ n1, n2 ≤ 2000, 0 ≤ m ≤ 2000) — the number of vertices in the first part, the number of vertices in the second part and the number of edges, respectively.

    The i-th of the next m lines contain two integers ui and vi (1 ≤ ui ≤ n1, 1 ≤ vi ≤ n2) — the description of the i-th edge, ui is the index of the vertex in the first part and vi is the index of the vertex in the second part.

    Output

    For each  print the subset of edges (minimal k-covering) in separate line.

    The first integer cntk of the k-th line is the number of edges in minimal k-covering of the graph. Then cntk integers follow — original indices of the edges which belong to the minimal k-covering, these indices should be pairwise distinct. Edges are numbered 1 through m in order they are given in the input.

    Examples

    Input
    3 3 7
    1 2
    2 3
    1 3
    3 2
    3 3
    2 1
    2 1
    Output
    0 
    3 3 7 4
    6 1 3 6 7 4 5
    Input
    1 1 5
    1 1
    1 1
    1 1
    1 1
    1 1
    Output
    0 
    1 5
    2 4 5
    3 3 4 5
    4 2 3 4 5
    5 1 2 3 4 5

    #include<bits/stdc++.h>
    using namespace std;
    const int N=4010;
    vector<int>g[N],num[N],ans[N];
    int f[N][N],tem[N][N],n,m,d[N],cnt,v[N];
    bool dfs(int x)
    {
        if(x==n)return true;
        v[x]=cnt;
        for(int i=0;i<g[x].size();i++)
        {
            int y=g[x][i];
            if(f[x][y]==0||v[y]==cnt)continue;
                if(dfs(y))
                {
                    f[x][y]--;
                    f[y][x]++;
                    return true;
                }
        }
        return false;
    }
    int main()
    {
        int n1,n2,x,y,k;
        scanf("%d%d%d",&n1,&n2,&k);
        n=n1+n2+1;
        for(int i=1;i<=k;i++)
        {
            scanf("%d%d",&x,&y);
            y+=n1;
            g[x].push_back(y);
            g[y].push_back(x);
            num[x].push_back(i);
            f[x][y]++;
            d[x]++,d[y]++;
        }
            m=k*2;
        for(int i=1;i<n;i++)m=min(m,d[i]);
        for(int i=1;i<=n1;i++)
        {
            g[0].push_back(i);
            g[i].push_back(0);
            f[0][i]=d[i]-m;
        }
        for(int i=n1+1;i<n;i++)
        {
            g[i].push_back(n);
            g[n].push_back(i);
            f[i][n]=d[i]-m;
        }
        for(int l=m;l>=0;l--)
        {
            cnt++;
            while(dfs(0))cnt++;
            for(int i=1;i<=n1;i++)
            {
                for(int j=0;j<g[i].size();j++)
                {
                    y=g[i][j];
                    tem[i][y]=f[i][y];
                }
            }
            for(int i=1;i<=n1;i++)
            {
                for(int j=0;j<g[i].size();j++)
                {
                    y=g[i][j];
                    if(y&&tem[i][y])
                    {
                        tem[i][y]--;
                        ans[l].push_back(num[i][j]);
                    }
                }
            }
            for(int i=1;i<=n1;i++)f[0][i]++;
            for(int i=n1+1;i<n;i++)f[i][n]++;
        }
        for(int i=0;i<=m;i++)
        {
            printf("%d",ans[i].size());
            for(auto &x:ans[i])
                printf(" %d",x);
            printf("
    ");
        }
    }
  • 相关阅读:
    1013:温度表达转化
    1012:计算多项式的值
    1012:计算多项式的值
    1012:计算多项式的值
    数据结构——线性表
    数据结构——线性表
    数据结构——线性表
    SqlSever查询某个表的列名称、说明、备注、注释,类型等
    SqlSever查询某个表的列名称、说明、备注、注释,类型等
    SQL:将查询结果插入到另一个表的三种情况
  • 原文地址:https://www.cnblogs.com/upstart/p/8982466.html
Copyright © 2011-2022 走看看