zoukankan      html  css  js  c++  java
  • spark scala 删除所有列全为空值的行

    删除表中全部为NaN的行

    df.na.drop("all")

    删除表任一列中有NaN的行

    df.na.drop("any")

    示例:

    scala> df.show
    +----+-------+--------+-------------------+-----+----------+
    |  id|zipcode|    type|               city|state|population|
    +----+-------+--------+-------------------+-----+----------+
    |   1|    704|STANDARD|               null|   PR|     30100|
    |   2|    704|    null|PASEO COSTA DEL SUR|   PR|      null|
    |   3|    709|    null|       BDA SAN LUIS|   PR|      3700|
    |   4|  76166|  UNIQUE|  CINGULAR WIRELESS|   TX|     84000|
    |   5|  76177|STANDARD|               null|   TX|      null|
    |null|   null|    null|               null| null|      null|
    |   7|  76179|STANDARD|               null|   TX|      null|
    +----+-------+--------+-------------------+-----+----------+
    
    
    scala> df.na.drop("all").show()
    +---+-------+--------+-------------------+-----+----------+
    | id|zipcode|    type|               city|state|population|
    +---+-------+--------+-------------------+-----+----------+
    |  1|    704|STANDARD|               null|   PR|     30100|
    |  2|    704|    null|PASEO COSTA DEL SUR|   PR|      null|
    |  3|    709|    null|       BDA SAN LUIS|   PR|      3700|
    |  4|  76166|  UNIQUE|  CINGULAR WIRELESS|   TX|     84000|
    |  5|  76177|STANDARD|               null|   TX|      null|
    |  7|  76179|STANDARD|               null|   TX|      null|
    +---+-------+--------+-------------------+-----+----------+
    
    
    scala> df.na.drop().show()
    +---+-------+------+-----------------+-----+----------+
    | id|zipcode|  type|             city|state|population|
    +---+-------+------+-----------------+-----+----------+
    |  4|  76166|UNIQUE|CINGULAR WIRELESS|   TX|     84000|
    +---+-------+------+-----------------+-----+----------+
    
    
    scala> df.na.drop("any").show()
    +---+-------+------+-----------------+-----+----------+
    | id|zipcode|  type|             city|state|population|
    +---+-------+------+-----------------+-----+----------+
    |  4|  76166|UNIQUE|CINGULAR WIRELESS|   TX|     84000|
    +---+-------+------+-----------------+-----+----------+

    删除给定列为Null的行:

    val nameArray = sparkEnv.sc.textFile("/master/abc.txt").collect()
    val df = df.na.drop("all", nameArray.toList.toArray)
    
    df.na.drop(Seq("population","type"))

    函数原型:

    def drop(): DataFrame
    Returns a new DataFrame that drops rows containing any null or NaN values.
    
    def drop(how: String): DataFrame
    Returns a new DataFrame that drops rows containing null or NaN values.
    If how is "any", then drop rows containing any null or NaN values. If how is "all", then drop rows only if every column is null or NaN for that row.
    
    def drop(how: String, cols: Seq[String]): DataFrame
    (Scala-specific) Returns a new DataFrame that drops rows containing null or NaN values in the specified columns.
    If how is "any", then drop rows containing any null or NaN values in the specified columns. If how is "all", then drop rows only if every specified column is null or NaN for that row.
    
    def drop(how: String, cols: Array[String]): DataFrame
    Returns a new DataFrame that drops rows containing null or NaN values in the specified columns.
    If how is "any", then drop rows containing any null or NaN values in the specified columns. If how is "all", then drop rows only if every specified column is null or NaN for that row.
    
    def drop(cols: Seq[String]): DataFrame
    (Scala-specific) Returns a new DataFrame that drops rows containing any null or NaN values in the specified columns.
    
    def drop(cols: Array[String]): DataFrame
    Returns a new DataFrame that drops rows containing any null or NaN values in the specified columns.

    更多函数原型:
    https://spark.apache.org/docs/2.2.0/api/scala/index.html#org.apache.spark.sql.DataFrameNaFunctions


    参考:
    N多spark使用示例:https://sparkbyexamples.com/spark/spark-dataframe-drop-rows-with-null-values/
    示例代码及数据集:https://github.com/spark-examples/spark-scala-examples csv路径:src/main/resources/small_zipcode.csv
    https://www.jianshu.com/p/39852729736a

  • 相关阅读:
    高性能队列设计
    线上 RTT 有 1/3 概率超过 3 秒,我用 arthas 查出元凶!
    你管这破玩意儿叫 token
    高可用与Zookeeper设计原理
    从应用层到网络层排查 Dubbo 接口超时全记录
    我是如何晋升专家岗的
    百亿数据,毫秒级返回,如何设计?--浅谈实时索引构建之道
    微信的原创保护机制到底是如何实现的
    AOP面试造火箭始末
    与一位转行做滴滴司机的前程序员对话引发的思考
  • 原文地址:https://www.cnblogs.com/v5captain/p/14248636.html
Copyright © 2011-2022 走看看