zoukankan      html  css  js  c++  java
  • python实现决策树

    参考:《机器学习实战》- Machine Learning in Action

    一、 基本思想

     我们所熟知的决策树的形状可能如下:

    image_1bp6chq921vrmlba1tej1c4mrk29.png-43kB

     使用决策树算法的目的就是生成类似于上图的分类效果。所以算法的主要步骤就是如何去选择结点。

     划分数据集的最大原则是:将无序的数据变得更加有序。我们可以使用多种方法划分数据集,但是每种方法都有各自的优缺点。集合信息的度量方式称为香农熵

     伪代码如下:

    检测数据集中的每个子项是否属于同一分类;
        if so return 类标签;
        else
            寻找划分数据集的最好特征
            划分数据集
            创建分支节点
                for 每个划分的子集
                    调用createBranch并增加返回结果到分支节点中
            return 分支节点
    

    一般而言,计算距离会采用欧式距离

    二、 代码

    # -*- coding:utf8 -*-
    import operator
    from math import log
    
    #计算信息熵
    def calcShannonEnt(dataSet):
    	numEntries = len(dataSet)
    	labelCounts = {}
    	for featVec in dataSet:
    		currentLabel = featVec[-1]
    		if currentLabel not in labelCounts.keys():
    			labelCounts[currentLabel] = 0
    		labelCounts[currentLabel] += 1
    
    	shannonEnt = 0.0
    	for key in labelCounts:
    		prob = float(labelCounts[key])/numEntries
    		shannonEnt -= prob*log(prob, 2)
    	return shannonEnt
    
    #按照给定特征划分数据集
    def splitDataSet(dataSet, axis, value):
    	retDataSet = []
    	for featVec in dataSet:
    		if featVec[axis] == value:
    			reducedFeatVec = featVec[:axis]
    			reducedFeatVec.extend(featVec[axis+1:])
    			retDataSet.append(reducedFeatVec)
    
    	return retDataSet
    
    #选择最好的数据集划分方式
    def chooseBestFeatureToSplit(dataSet):
    	numFeatures = len(dataSet[0]) - 1
    	baseEntropy = calcShannonEnt(dataSet)
    	bestInfoGain = 0.0
    	bestFeature = -1
    	for i in range(numFeatures):
    		featList = [example[i] for example in dataSet]
    		uniqueVals = set(featList)
    		newEntropy = 0.0
    		for value in uniqueVals:
    			subDataSet = splitDataSet(dataSet, i, value)
    			prob = len(subDataSet)/float(len(dataSet))
    			newEntropy += prob * calcShannonEnt(subDataSet)
    		infoGain = baseEntropy - newEntropy
    		if (infoGain > bestInfoGain):
    			bestInfoGain = infoGain
    			bestFeature = i
    	return bestFeature
    
    
    #构造决策树
    def majorityCnt(classList):
    	classCount = {}
    	for vote in classList:
    		if vote not in classCount.keys():
    			classCount[vote] = 0
    		classCount[vote] += 1
    		sortedClassCount = sorted(classCount.items(), 
    			key=lambda item:item[1], reverse=True)
    
    	return sortedClassCount[0][0]
    
    def createTree(dataSet, labels):
    	classList = [example[-1] for example in dataSet]
    	if classList.count(classList[0]) == len(classList):
    		return classList[0]
    	if len(dataSet[0]) == 1:
    		return majorityCnt(classList)
    	bestFeat = chooseBestFeatureToSplit(dataSet)
    	bestFeatLabel = labels[bestFeat]
    	myTree = {bestFeatLabel:{}}
    	del labels[bestFeat]
    	featValues = [example[bestFeat] for example in dataSet]
    	uniqueVals = set(featValues)
    	for value in uniqueVals:
    		subLabels = labels[:]
    		myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    
    	return myTree
    
    
  • 相关阅读:
    书签快捷键0
    msxml3.dll 执行页内操作时的错误
    DrawGrid DrawFocusRect
    RAD XE8
    Richview 首页 奇偶页 不同页眉页脚
    改变画布大小
    c# 数据集调试工具插件
    数据库连接补丁 驱动
    怎么关闭百度推广
    被封的著名网站
  • 原文地址:https://www.cnblogs.com/vachester/p/7475541.html
Copyright © 2011-2022 走看看