zoukankan      html  css  js  c++  java
  • SRM144 DIV2 1100

    图论题,题目重新叙述为:

    一棵树从根出发遍历完所有节点的最短总路径之和

    令 (p(x)) 表示节点 (x) 到根的路径长,(sum) 表示所求总路径之和,则:

    (sum_{min}=2 imes sum_i ductLength_i - max{p(x)})

    证明

    最优解与深度优先遍历有关,先证明如下问题:

    若最终遍历还要回到根节点,则最短路径之和 (sum2_{min}) 就是深度优先遍历的路径之和 (deepsum)

    利用归纳法可以证明深度优先遍历路径和 (deepsum=2 imes sum_i ductLength_i)

    若最终遍历回到根节点,则任何一条边必然至少被遍历两次,因此 (sum2_{min} geq 2 imes sum_i ductLength_i),所以:

    (sum2_{min}=deepsum=2 imes sum_i ductLength_i)

    将回到根节点的遍历法分为两步:

    1. 遍历到最后一个节点 (x)

    2. 回到根节点

    因此:

    ( sum2=sum+p(x))

    (egin{equation}egin{split}sum_{min}&=sum2_{min}-max{p(x)} \ &=2 imes sum_i ductLength_i - max{p(x)}end{split}end{equation})

    可以证明深度优先遍历时使得 (sum2) 取最小值和 (p(x)) 取最大值并不冲突,综上,命题得证

     1 class Graph:
     2     def __init__(self, n):
     3         self.n = n                       # 节点个数
     4         self.g = [[] for i in range(n)]  # 邻接表表示的图模型
     5 
     6     def count(self):
     7         return self.n
     8 
     9 
    10     # 新增一条边
    11     def append(self, i, j, l=None):
    12         self.g[i].append((j, l))
    13 
    14 
    15     # 返回从x的后继边的集合
    16     def nexts(self, x):
    17         return self.g[x]
    18 
    19 # DFS算法
    20 class DeepFirstSearch:
    21     def __init__(self, begin, g):
    22         self.begin = begin         # 开始节点
    23         self.searchHandle = None   # 搜到新节点时触发
    24         self.g = g                 # 搜索图
    25 
    26     def _onSearch(self, prev, nextNode, l):
    27         if self.searchHandle != None:
    28             self.searchHandle(prev, nextNode, l)
    29 
    30     def do(self):
    31         a = [self.begin]
    32         marks = [False] * self.g.count()
    33         marks[self.begin] = True
    34         while len(a) > 0:
    35             x = a.pop()
    36             for yl in self.g.nexts(x):
    37                 y = yl[0]
    38                 l = yl[1]
    39                 if not marks[y]:
    40                     self._onSearch(x, y, l)
    41                     marks[y] = True
    42                     a.append(y)
    43 
    44 
    45 class PowerOutage:
    46     def search(self, x, y, l):
    47         self.deeps[y] = self.deeps[x] + l
    48         self.maxDeep = max(self.maxDeep, self.deeps[y])
    49 
    50     def estimateTimeOut(self, f, t, l):
    51         maxNodeCount = 50
    52         g = Graph(maxNodeCount)
    53         for i in range(len(f)):
    54             g.append(f[i], t[i], l[i])
    55 
    56         self.deeps = [0] * maxNodeCount
    57         self.maxDeep = 0
    58         dfs = DeepFirstSearch(0, g)
    59         dfs.searchHandle = self.search
    60         dfs.do()
    61 
    62         result = 2 * sum(l) - self.maxDeep
    63         return result
    64 
    65 
    66 # test
    67 o = PowerOutage()
    68 
    69 # test case
    70 assert(o.estimateTimeOut((0,), (1,), (10,)) == 10)
    71 assert(o.estimateTimeOut((0,1,0), (1,2,3), (10,10,10)) == 40)
    72 assert(o.estimateTimeOut((0,0,0,1,4), (1,3,4,2,5), (10,10,100,10,5)) == 165)
    73 assert(o.estimateTimeOut((0,0,0,1,4,4,6,7,7,7,20), (1,3,4,2,5,6,7,20,9,10,31), (10,10,100,10,5,1,1,100,1,1,5)) == 281)
    74 assert(o.estimateTimeOut((0,0,0,0,0), (1,2,3,4,5), (100,200,300,400,500)) == 2500)
    View Code
  • 相关阅读:
    python daemon install
    添加 sudoer centos
    CentOS 5安装openssh
    java使用sh或是jsvc来做daemon应该是主流
    Maven JAR Plugin
    The Java™ Tutorials offical学习的好资料哦
    linux下lrzsz安装,SecureCRT上传下载文件工具 寒枫欣叶
    ssh on centos5
    CentOS Linux Install Core Development Tools Automake, Gcc (C/C++), Perl, Python & Debuggers
    Setting an Application's Entry Point
  • 原文地址:https://www.cnblogs.com/valaxy/p/3440806.html
Copyright © 2011-2022 走看看