Orac and LCM
题意
有一个数组s,相关定义如下
- (gcd(s))是最大的一个整数x,s中的所有数字都可以整除x
- (lcm(s))是最小的一个整数x,x可以整除s中的所有数字
给出一个有n个数字的数组a,根据数组a,得到另一个数组(t={lcm(a_i,a_j)|i<j}),
让求出(gcd(t))
思路
[egin{aligned}
gcd(t)=&gcd{\
&gcd{lcm(a_1,a_2),lcm(a_1,a_3),lcm(a_1,a_4)...lcm(a_1,a_n)},\
&gcd{lcm(a_2,a_3),lcm(a_2,a_4)...lcm(a_2,a_n)},\
&...\
&gcd{lcm(a_{n-2},a_{n-1}),lcm(a_{n-2},a_n)},\
&gcd{lcm(a_{n-1},a_n)}\
}
end{aligned}
]
单看(gcd{lcm(a_1,a_2),lcm(a_1,a_3),lcm(a_1,a_4)...lcm(a_1,a_n)})
可以知道(lcm(a,b)=a*frac{b}{gcd(a,b)}),那么
[egin{aligned}
&gcd{lcm(a_1,a_2),lcm(a_1,a_3),lcm(a_1,a_4)...lcm(a_1,a_n)}\
&=gcd{a_1*frac{a_2}{gcd(a_1,a_2)},a_1*frac{a_3}{gcd(a_1,a_3)},a_1*frac{a_4}{gcd(a_1,a_4)}...a_1*frac{a_n}{gcd(a_1,a_n)}}\
&=a_1*gcd{frac{a_2}{gcd(a_1,a_2)},frac{a_3}{gcd(a_1,a_3)},frac{a_4}{gcd(a_1,a_4)},...,frac{a_n}{gcd(a_1,a_m)}}\
&=a_1*{frac{gcd{a_2,a_3,a_4,..,a_n}}{gcd{a_1,gcd{a_2,a_3,a_4,..,a_n}}}}\
&=a_1*{frac{gcd{a_2,a_3,a_4,..,a_n}} {gcd{a_1,a_2,a_3,a_4,..,a_n}}}\
end{aligned}
]
定义(suf[i]=gcd{a_i,a_{i+1},a_{i+2},...,a_{n-1},a_n}),那么
[egin{aligned}
gcd(t)=gcd{\
&a_1*frac{suf[2]} {suf[1]},\
&a_2*frac{suf[3]} {suf[2]},\
&...\
&a_{n-2}*frac{suf[n-1]} {suf[n-2]},\
&a_{n-1}*frac{suf[n]} {suf[n-1]},\
}
end{aligned}
]
最后顺序求一遍(a_i*frac{suf[i+1]}{suf[i]})的gcd就可以了
代码
/*Gts2m ranks first in the world*/
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
typedef long long ll;
ll suf[N],arr[N],rel[N];
int main()
{
ll n;
scanf("%lld",&n);
for(ll i=1;i<=n;i++)
scanf("%lld",&arr[i]);
suf[n+1]=arr[n];
for(ll i=n;i;i--)
{
suf[i]=__gcd(suf[i+1],arr[i]);
rel[i]=1LL*suf[i+1]/suf[i]*arr[i];
}
ll ans=rel[n-1];
for(ll i=1;i<n-1;i++) ans=__gcd(ans,rel[i]);
printf("%lld
",ans);
return 0;
}