zoukankan      html  css  js  c++  java
  • 如何把数据快速批量添加到Elasticsearch中

    问题来源

    最近新做一个项目,有部分搜索比较频繁的数据,而且量级比较大,预计一两年时间很可能达到100G,项目要求不要存在数据库中,最终出来有两个方案,一个是使用Protocol Buffers存储在文件上,另外就是存在Elasticsearch中,也方便搜索,但这两个方案需要验证,到底哪个方案好,从存储速度,搜索响应,占用空间方面做对比,而我负责给出Elasticsearch的部分技术建议!

    验证需求

    1、数据量:初步只算52亿条

    2、写数据速度:需要超过1W条每秒

    遇到问题以及解决办法

    而在验证过程中遇到了无论是使用Elasticsearch.Net或者PlainElastic.Net来写数据,并且是使用了Bulk的api,加上多线程,都是太慢了,粗略算了一下,大概一秒插入3千条左右,这样的话,52亿条数据,得插到何年何月啊,太慢了,根据查阅资料,网上也有人说插入数据还是挺快 的,一秒可以插入18w条,但具体也没说是用什么办法插入的,所以只能到官方看看了,发现用REST API的_bulk来批量插入,这样速度明显快了,可以达到5到10w条每秒,速度还可以,但问题是这方法是先定义一定格式的json文件,然后再用curl命令去执行Elasticsearch的_bulk来批量插入,所以得把数据写进json文件,然后再通过批处理,执行文件插入数据,另外在生成json文件,文件不能过大,过大会报错,所以建议生成10M一个文件,然后分别去执行这些小文件就可以了,说了这么多都是文字,真的有点晕乎乎的,看图吧!

    json数据文件内容的定义

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    {"index":{"_index":"meterdata","_type":"autoData"}}
    {"Mfid ":1,"TData":172170,"TMoney":209,"HTime":"2016-05-17T08:03:00"}
    {"index":{"_index":"meterdata","_type":"autoData"}}
    {"Mfid ":1,"TData":172170,"TMoney":209,"HTime":"2016-05-17T08:04:00"}
    {"index":{"_index":"meterdata","_type":"autoData"}}
    {"Mfid ":1,"TData":172170,"TMoney":209,"HTime":"2016-05-17T08:05:00"}
    {"index":{"_index":"meterdata","_type":"autoData"}}
    {"Mfid ":1,"TData":172170,"TMoney":209,"HTime":"2016-05-17T08:06:00"}
    {"index":{"_index":"meterdata","_type":"autoData"}}
    {"Mfid ":1,"TData":172170,"TMoney":209,"HTime":"2016-05-17T08:07:00"}

     

    批处理内容的定义

    1
    2
    3
    4
    5
    6
    7
    cd E:curl-7.50.3-win64-mingwin
    curl 172.17.1.15:9200/_bulk?pretty --data-binary @E:BinDebug estdata437714060.json
    curl 172.17.1.15:9200/_bulk?pretty --data-binary @E:BinDebug estdata743719428.json
    curl 172.17.1.15:9200/_bulk?pretty --data-binary @E:BinDebug estdata281679894.json
    curl 172.17.1.15:9200/_bulk?pretty --data-binary @E:BinDebug estdata146257480.json
    curl 172.17.1.15:9200/_bulk?pretty --data-binary @E:BinDebug estdata892018760.json
    pause

     

    工具代码

    复制代码
     1      private void button1_Click(object sender, EventArgs e)
     2         {
     3             //Application.StartupPath + "\" + NextFile.Name
     4             Task.Run(() => { CreateDataToFile(); });
     5         }
     6         public void CreateDataToFile()
     7         {
     8             StringBuilder sb = new StringBuilder();
     9             StringBuilder sborder = new StringBuilder();
    10             int flag = 1;
    11             sborder.Append(@"cd E:curl-7.50.3-win64-mingwin" + Environment.NewLine);
    12             DateTime endDate = DateTime.Parse("2016-10-22");
    13             for (int i = 1; i <= 10000; i++)//1w个点
    14             {
    15                 DateTime startDate = DateTime.Parse("2016-10-22").AddYears(-1);
    16                 this.Invoke(new Action(() => { label1.Text = "生成第" + i + "个"; }));
    17 
    18                 while (startDate <= endDate)//每个点生成一年数据,每分钟一条
    19                 {
    20                     if (flag > 100000)//大于10w分割一个文件
    21                     {
    22                         string filename = new Random(GetRandomSeed()).Next(900000000) + ".json";
    23 
    24                         FileStream fs3 = new FileStream(Application.StartupPath + "\testdata\" + filename, FileMode.OpenOrCreate);
    25                         StreamWriter sw = new StreamWriter(fs3, Encoding.GetEncoding("GBK"));
    26                         sw.WriteLine(sb.ToString());
    27                         sw.Close();
    28                         fs3.Close();
    29                         sb.Clear();
    30                         flag = 1;
    31                         sborder.Append(@"curl 172.17.1.15:9200/_bulk?pretty --data-binary @E:BinDebug	estdata" + filename + Environment.NewLine);
    32 
    33                     }
    34                     else
    35                     {
    36                         sb.Append("{"index":{"_index":"meterdata","_type":"autoData"}}" + Environment.NewLine);
    37                         sb.Append("{"Mfid ":" + i + ","TData":" + new Random().Next(1067500) + ","TMoney":" + new Random().Next(1300) + ","HTime":"" + startDate.ToString("yyyy-MM-ddTHH:mm:ss") + ""}" + Environment.NewLine);
    38                         flag++;
    39                     }
    40                     startDate = startDate.AddMinutes(1);//
    41                 }
    42 
    43             }
    44             sborder.Append("pause");
    45             FileStream fs1 = new FileStream(Application.StartupPath + "\testdata\order.bat", FileMode.OpenOrCreate);
    46             StreamWriter sw1 = new StreamWriter(fs1, Encoding.GetEncoding("GBK"));
    47             sw1.WriteLine(sborder.ToString());
    48             sw1.Close();
    49             fs1.Close();
    50             MessageBox.Show("生成完毕");
    51 
    52         }
    53         static int GetRandomSeed()
    54         {//随机生成不重复的编号
    55             byte[] bytes = new byte[4];
    56             System.Security.Cryptography.RNGCryptoServiceProvider rng = new System.Security.Cryptography.RNGCryptoServiceProvider();
    57             rng.GetBytes(bytes);
    58             return BitConverter.ToInt32(bytes, 0);
    59         }
    复制代码

    总结

     本次测试结果,发现Elasticsearch的搜索速度是挺快的,生成过程中,在17亿数据时查了一下,根据Mid和时间在几个月范围的数据,查十条数据两秒多完成查询,而且同一查询条件查询越多,查询就越快,应该是Elasticsearch缓存了,52亿条数据,大概占用500G空间左右,还是挺大的,相比Protocol Buffers存储的数据,要大三倍左右,但搜索速度还是比较满意的。

     转载:http://www.cnblogs.com/hai-ping/p/6068946.html

     
  • 相关阅读:
    缓动动画的原理
    高级各行高亮显示
    返回顶部的小火箭
    事件委托
    原型链和原型的继承
    对象的构建和构造函数
    call、apply和bind
    闭包
    九宫格封装好的组件 样式可以自由改哦
    嘿嘿嘿嘿 马上就有新任务了 提前封装一个转盘抽奖组件
  • 原文地址:https://www.cnblogs.com/valor-xh/p/6297788.html
Copyright © 2011-2022 走看看