考虑运用悬线法求最大01子矩阵
- 方法对于每个点 (i) 求其,向左 (l[i][j]) , 向右 (r[i][j]) 能达到的最大位置和向上 (up[i][j]) 能达到的最大距离
- 首先预处理这些值
int n,m;char ch;scanf("%d%d",&n,&m);
for (int i=1; i<=n; i++)
for (int j=1; j<=m; j++) {
cin>>ch; if(ch=='F') a[i][j]=true;
l[i][j]=j;r[i][j]=j;up[i][j]=1;}
for (int i=1; i<=n; i++)
for (int j=2; j<=m; j++)
if (a[i][j]&&a[i][j-1]) l[i][j]=l[i][j-1];
for (int i=1; i<=n; i++)
for (int j=m-1; j>=1; j--)
if (a[i][j]&&a[i][j+1]) r[i][j]=r[i][j+1];
- 如下图这是 (up[i][j]) 该有的亚子
- 接下来对每个点求其能形成的矩阵 (以该点所在的水平为最低边)
int ans=0;
for (int i=1; i<=n; i++)
for (int j=1; j<=m; j++) {
if(a[i][j]&&a[i-1][j])
r[i][j]=min(r[i-1][j],r[i][j]),
l[i][j]=max(l[i-1][j],l[i][j]),//l[i][j]和r[i][j]都是坐标
up[i][j]=up[i-1][j]+1;
ans=max(ans,(r[i][j]-l[i][j]+1)*up[i][j]);
}
- 下图为形成的矩阵
- 从上向下扫
(AC code)
#include <bits/stdc++.h>
using namespace std;
const int M=2010;
int a[M][M],l[M][M],r[M][M],up[M][M],ans;
int main(){
int n,m;char ch;scanf("%d%d",&n,&m);
for (int i=1; i<=n; i++)
for (int j=1; j<=m; j++) {
cin>>ch; if(ch=='F') a[i][j]=true;
l[i][j]=j;r[i][j]=j;up[i][j]=1;}
for (int i=1; i<=n; i++)
for (int j=2; j<=m; j++)
if (a[i][j]&&a[i][j-1]) l[i][j]=l[i][j-1];
for (int i=1; i<=n; i++)
for (int j=m-1; j>=1; j--)
if (a[i][j]&&a[i][j+1]) r[i][j]=r[i][j+1];
int ans=0;
for (int i=1; i<=n; i++)
for (int j=1; j<=m; j++) {
if(a[i][j]&&a[i-1][j])
r[i][j]=min(r[i-1][j],r[i][j]),
l[i][j]=max(l[i-1][j],l[i][j]),
up[i][j]=up[i-1][j]+1;
ans=max(ans,(r[i][j]-l[i][j]+1)*up[i][j]);
}
printf("%d
",ans*3);
return 0;
}