zoukankan      html  css  js  c++  java
  • Catalan数

    先看2个问题:



    问题一:

    n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序?


    先从简单的入手:
    n=1,当然只有1种;
    n=2,可以是1,2  也可以是2,1;那么有2种;
    n=3,可以是1,2,3或1,3,2或2,1,3或2,3,1或3,2,1;一共5种;
    容易联想到可能有一个通项公式可以求;
    (扯一点,以前学栈的时候做过判断一个序列是否为合法的出栈顺序的题目,只要依次检查序列,对于一个元素i,在i后面出来的且序号比i小的肯定是从大到小出来的,比如 4 2 1 3,如果4都出来了,那么栈里从上到下只能是3 2 1)
    通项公式的推导:
    起先设F[i]表示i个元素进出栈(入栈的编号从小到大)的方案数;F[0]=1;F[1]=1;F[2]=2;F[3]=5; 
    对于F[n];假设编号为1的元素先入栈,在出栈,那么剩下n-1个元素,方案数就是F[1]*F[n-1];
    假设编号为1和2的元素入栈出栈,有F[2]种方案,剩下n-2个元素,根据乘法原理方案数就是F[2]*F[n-2];
    ......
    1,2,3,......n-1先入栈出栈......
    相加就是总方案数
    但是带入发现不对:其实这样枚举会漏解,因为这样枚举元素n永远都是最后一个出栈;
    思路二:
    假设元素1第一个出栈,剩下n-1个; 方案数就是F[0]*F[n-1];
    假设元素1第二个出栈,剩下n-2个;1前面的1个元素出栈有F[1]种方案,后n-2个有F[n-2]种,根据乘法原理 方案数就是F[1]*F[n-2];
    假设元素1第三个出栈,剩下n-3个;1前面的2个元素出栈有F[2]种方案,后n-3个有F[n-3]种,根据乘法原理 方案数就是F[2]*F[n-3]; 
    ......
    假设元素1第n个出栈......
    相加就是总方案数;
    公式的话就是F[n]=F[k-1]*F[n-k](1<=K<=n);




    问题2:

    n个1和n个0组成一个2n位的二进制数;要求从左到右的1的累计数不少于0的累计数,求方案数。


    假设有一个2n位的二进制数,从左到右某一位开始不满足条件,那么这一位前面的1和0一样多,所以这一位必定是奇数位。
    设第2k+1位开始不满足条件,那么第2k+1位是0;前面2k+1位有k个1和k+1个0,剩下后面的(2n-2k-1)位有n-k个1和
    n-k-1个0;如果把后面的2n-2k-1)位中的n-k个1换成0,把n-k-1个0换成1;那么这个二进制数就变成了由n+1个0和n-1个1组成的二进制数;因此可知任意一个不符合要求的数都可以转化成一个由n+1个0和n-1个1组成的二进制数;
    同理反过来 任意一个由n+1个0和n-1个1组成的二进制数都可以转化成一个不符合要求的数;证明:由于0比1多2个,必定在从某一个偶数位开始,0的个数比1多2个;同理把后面部分的01互换,就变成一个由n+1个0和n-1个1组成的二进制数;
    所以总方案就等于 n个1和n个0组成一个2n位的二进制数的个数减去由n+1个0和n-1个1组成的二进制数的个数;
    F[n]=C(2n,n)-C(2n,n-1)=C(2n,n)/(n+1);

    由问题二 再来看 问题一:进栈的累计次数必定不少于出栈的累计次数,故
     F[n]=C(2n,n)-C(2n,n-1)=C(2n,n)/(n+1
    也等于 F[k-1]*F[n-k](1<=K<=n)。这就是Catalan数(数学家Catalan在研究乘法结合律的时候提出,即求一个式子a1*a2*a3*a4*a5*......an一共有多少种添加括号的方法);



    总结:像这种某两个元素的总个数相等,但其中一个的累计数不小于另一个的题目都可以用Catalan数的公式来解决; 
     
    相关练习:
    1.2n个人排成一行买票,n个人只有10元整,n个人只有5元整,票价5元一张,问有多少种排队的方法,使得只要有带着10元的人买票,就有零钱可以找给他;
    2.过河卒改编版,(图不好画,,结合过河卒的图吧)就是从左到右,n行n列,第一列只有从下到上1个 格子,第2列从下到上有2个,第n列有n个格子,从最左下角走到最右上角有多少种方案;

    Every day is meaningful, keeping learning!
  • 相关阅读:
    简单的实现了利用plist进行大图分割小图
    windows 10升级后系统盘清理
    在window下用编译lua源文件生成lua程序
    window下ip切换
    springMVC对简单对象、Set、List、Map的数据绑定和常见问题.
    MIME类型大全
    Apache poi 固定Excel 表格导入数据库方法(列名对应数据库字段名)
    java 通过Apache poi导出excel代码demo实例
    mySQL 开启事件存储过程
    Mysql 变量讲解
  • 原文地址:https://www.cnblogs.com/vb4896/p/3874622.html
Copyright © 2011-2022 走看看