zoukankan      html  css  js  c++  java
  • tensorFlow入门实践(三)实现lenet5(代码结构优化)

    这两周我学习了北京大学曹建老师的TensorFlow笔记课程,认为老师讲的很不错的,很适合于想要在短期内上手完成一个相关项目的同学,课程在b站和MOOC平台都可以找到。

    在卷积神经网络一节,课程以lenet5为例,给出了完整的代码,通过这样一个例子完成了模型构建、较大数据量的训练和测试。整个代码不复杂,架构完整,我觉得代码很干净,很优秀,所以想把之后需要实现的Alexnet等网络结构都按照这个代码的结构来改。

    下面是lenet5实现,数据集依然mnist。

    forward.py

    #coding:utf-8
    import tensorflow as tf
    IMAGE_SIZE = 28
    NUM_CHANNELS = 1
    CONV1_SIZE = 5
    CONV1_KERNEL_NUM = 32
    CONV2_SIZE = 5
    CONV2_KERNEL_NUM = 64
    FC_SIZE = 512
    OUTPUT_NODE = 10
    
    
    def get_weight(shape, regularizer): # 参数:生成张量的维度、正则化权重
        w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
        return w
    
    
    def get_bias(shape):
        b = tf.Variable(tf.zeros(shape))
        return b
    
    
    def conv2d(x, w): #参数:输入图片x和所用卷积核w 都为四阶张量
        return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
    
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    
    def forward(x, train, regularizer):
        conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer)
        conv1_b = get_bias([CONV1_KERNEL_NUM])
        conv1 = conv2d(x, conv1_w)
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b))
        pool1 = max_pool_2x2(relu1)
    
        conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM], regularizer)
        conv2_b = get_bias([CONV2_KERNEL_NUM])
        conv2 = conv2d(pool1, conv2_w)
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b))
        pool2 = max_pool_2x2(relu2)
        # pool2为第二个卷积层的输出,需要把它从三维张量变为二维张量 
    
        pool_shape = pool2.get_shape().as_list()
        nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
        # [0]是betch的值,此处我们提取[1][2][3]是特征的长、宽、深度相乘得到所有特征点的个数
        reshaped = tf.reshape(pool2, [pool_shape[0], nodes]) # 重塑为二维
    
        fcl_w = get_weight([nodes, FC_SIZE], regularizer)
        fcl_b = get_bias([FC_SIZE])
        fcl = tf.nn.relu(tf.matmul(reshaped, fcl_w) + fcl_b) # 将二维特征输入全连接网络
        if train: fcl = tf.nn.dropout(fcl, 0.5) # 如果是训练阶段,则对该层的输出进行50%dropout
    
        fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer)
        fc2_b = get_bias(OUTPUT_NODE)
        y = tf.matmul(fcl, fc2_w) + fc2_b
        return y

    backward.py

    #coding:utf-8
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import os
    import forward
    import numpy as np
    
    BATCH_SIZE = 100
    LEARNING_RATE_BASE = 0.005
    LEARNING_RATE_DECAY = 0.99
    REGULARIZER = 0.0001
    STEPS = 50000
    MOVING_AVERAGE_DECAY = 0.99
    MODEL_SAVE_PATH="./model/"
    MODEL_NAME="mnist_model"
    
    def backward(mnist):
        x = tf.placeholder(tf.float32, [
            BATCH_SIZE,
            forward.IMAGE_SIZE,
            forward.IMAGE_SIZE,
            forward.NUM_CHANNELS
        ])
        y_ = tf.placeholder(tf.float32, [None, forward.OUTPUT_NODE])
        y = forward.forward(x, True, REGULARIZER)
        global_step = tf.Variable(0, trainable=False)
    
        ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(y_, 1))
        cem = tf.reduce_mean(ce)
        loss = cem + tf.add_n(tf.get_collection('losses'))
    
        learning_rate = tf.train.exponential_decay(
            LEARNING_RATE_BASE,
            global_step,
            mnist.train.num_examples / BATCH_SIZE,
            LEARNING_RATE_DECAY,
            staircase=True
        )
    
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    
        ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
        ema_op = ema.apply(tf.trainable_variables())
        with tf.control_dependencies([train_step, ema_op]):
            train_op = tf.no_op(name='train')
    
        saver = tf.train.Saver()
    
        with tf.Session() as sess:
            init_op = tf.global_variables_initializer()
            sess.run(init_op)
    
            ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
    
            for i in range(STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                reshaped_xs = np.reshape(xs, (
                    BATCH_SIZE,
                    forward.IMAGE_SIZE,
                    forward.IMAGE_SIZE,
                    forward.NUM_CHANNELS))
                _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})
                if i % 100 == 0:
                    print("After %d training step(s), loss an training batch is %g." % (step, loss_value))
                    saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
    
    def main():
        mnist = input_data.read_data_sets("data", one_hot=True)
        backward(mnist)
    
    if __name__=='__main__':
        main()

    test.py

    # coding:utf-8
    import time
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import forward
    import backward
    import numpy as np
    
    TEST_INTERVAL_SECS = 5
    
    
    def evaluate(mnist):
        with tf.Graph().as_default() as g: # 再现图
            x = tf.placeholder(tf.float32, [
                mnist.test.num_examples,
                forward.IMAGE_SIZE,
                forward.IMAGE_SIZE,
                forward.NUM_CHANNELS])
            y_ = tf.placeholder(tf.float32, [None, forward.OUTPUT_NODE])
            y = forward.forward(x, False, None)
    
            # 实例化带滑动平均的Saver对象
            ema = tf.train.ExponentialMovingAverage(backward.MOVING_AVERAGE_DECAY)
            ema_restore = ema.variables_to_restore()
            saver = tf.train.Saver(ema_restore)
    
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
            while True:
                with tf.Session() as sess:
                    ckpt = tf.train.get_checkpoint_state(backward.MODEL_SAVE_PATH)
                    # 判断是否有模型,如果有,恢复模型到当前会话
                    if ckpt and ckpt.model_checkpoint_path:
                        saver.restore(sess, ckpt.model_checkpoint_path)
    
                        global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                        reshaped_x = np.reshape(mnist.test.images, (
                            mnist.test.num_examples,
                            forward.IMAGE_SIZE,
                            forward.IMAGE_SIZE,
                            forward.NUM_CHANNELS))
                        accuracy_score = sess.run(accuracy, feed_dict={x: reshaped_x, y_: mnist.test.labels})
                        print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
                    else:
                        print('No checkpoint file found')
                        return
                time.sleep(TEST_INTERVAL_SECS)
    
    
    def main():
        mnist = input_data.read_data_sets("data", one_hot=True)
        evaluate(mnist)
    
    
    if __name__ == '__main__':
        main()

    在自己电脑上运行还真的需要time.sleep,要不然跑起来CPU占用一直99%只能强制关机了。

    while True 的循环体,会一直判断并拿到当前最新的训练模型,电脑上实现不能够边训练边测试,不能看到测试准确率在整个训练过程中的变化,只能看到最后的结果啦。(训练完成用了整整一天)

    下一步就是明天参考着这个完成Alexnet的整体实现啦。

  • 相关阅读:
    hdu 2065
    hdu 1999
    hdu 1562
    hdu 1728
    hdu 1180
    hdu 1088
    hdu 2133
    很好的例子。。
    putty 多标签式浏览
    df
  • 原文地址:https://www.cnblogs.com/veraLin/p/10328323.html
Copyright © 2011-2022 走看看