zoukankan      html  css  js  c++  java
  • 解题报告 HDU1159 Common Subsequence

    Common Subsequence
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     

    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp
     

    Sample Output

    4
    2
    0
     
     
    分析:

      设c[i][j]为字符串a的第i个字符与字符串b的第j个字符为止的最长公共子序列长度,那么有两种情况:

    1. 当a[i] == b[j]时,c[i][j]应该是前一个状态的最长公共子序列长度 + 1,因为a[i]与b[j]匹配,a[i]与b[j]必然不能已经匹配过,否则就是同一个字母匹配了多次,这必然是非法的,因此上一个状态应是c[i - 1][j - 1],即c[i][j] = c[i - 1][j - 1] + 1;
    2. 当a[i] != b[j]时,上一个状态可能是c[i - 1][j]或c[i][j - 1],而既然要找最长公共子序列,自然是找最大的一个,即c[i][j] = max(c[i - 1][j], c[i][j - 1])。
    AC代码:
     1 #include<iostream>
     2 #include<string>
     3 using namespace std;
     4 int dp[1005][1005];
     5 int main()
     6 {
     7     string a,b;
     8     while(cin>>a>>b)
     9     {
    10         int alen=a.length();
    11         int blen=b.length();
    12         memset(dp,0,sizeof(dp));
    13         for(int i=1;i<=alen;i++)
    14         {
    15             for(int j=1;j<=blen;j++)
    16             {
    17                 if(a[i-1]==b[j-1])
    18                     dp[i][j]=dp[i-1][j-1]+1;
    19                 else
    20                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    21             }
    22         }
    23         for(int i=1;i<=alen;i++)
    24         {
    25             for(int j=1;j<=blen;j++)
    26                 cout<<dp[i][j]<<" ";
    27             cout<<endl;
    28         }
    29         cout<<dp[alen][blen]<<endl;
    30     }
    31     return 0;
    32 } 
  • 相关阅读:
    C语言I博客作业04
    PTA一般问题汇总与解答
    C语言I博客作业03
    C语言I博客作业02
    C语言I—2019秋作业第一周作业
    C语言I博客作业03
    C语言I博客作业02
    第一周作业
    【2017下集美大学软工1412班_助教博客】团队作业8——测试与发布成绩公示
    《构建之法》读书笔记第8章——需求分析
  • 原文地址:https://www.cnblogs.com/verlen11/p/4240078.html
Copyright © 2011-2022 走看看