zoukankan      html  css  js  c++  java
  • 无题

    大讨论题。。写了一点就弃疗了。。按权值大小枚举中间那个数,根据两边的值与中间那个值得大小关系可以分出3类,反过来又是三类,一共九类。。

    发现每个位置的贡献最多变化两次。。。发现要取最值不能离散化就弃疗了。。

     记个题号以后再补吧。。bzoj1099

      1 #include <bits/stdc++.h>
      2 
      3 using namespace std;
      4 typedef long long ll;
      5 const int N = 50100;
      6 struct Node{
      7     int x,y;
      8     Node(){}
      9     Node(int x,int y):x(x),y(y){}
     10 }nod[N];
     11 ll seg[3][N<<2],sum[3][N<<2];
     12 int n,a[N],rank[N],len,finger;
     13 ll sum,ans[N];
     14 bool cmp(const Node &a,const Node &b){
     15     return a.x < b.x;
     16 }
     17 void init();
     18 void insert(int,int,int,int,int,int);
     19 void update(int,int);
     20 int main(){
     21     scanf("%d",&n);
     22     for (int i = 1;i <= n;i++) scanf("%d",&a[i]);
     23     for (int i = 1;i < n;i++) sum += abs(a[i]-a[i+1]);
     24     if (n == 2){
     25         printf("%lld
    %lld
    ",sum,sum);
     26         return 0;
     27     }
     28     init();
     29     
     30     for (int i = 2;i < n;i++)
     31         nod[i] = Node(a[i],i);
     32     sort(nod+2,nod+n,cmp);
     33     
     34     len = 1;
     35     for (int i = 3;i < n;i++)
     36         if (nod[i].x != nod[i-1].x) rank[i-1] = len++;
     37         else rank[i-1] = len;
     38     rank[n-1] = len;
     39     
     40     finger = nod[2].x;
     41     for (int i = 2;i < n;i++){
     42         if (abs(nod[i].y-nod[2].y) != 1){
     43             int opt;
     44             if (min(a[nod[i].y-1],a[nod[i].y+1]) >= nod[2].x) opt = 0;
     45             else if (max(a[nod[i].y-1],a[nod[i].y+1) <= nod[2].x) opt = 2;
     46             else opt = 1;
     47             insert(1,1,n,rank[nod[i].y],nod[i].y,opt);
     48         }
     49     }
     50     for (int i = 2;i < n;i++){
     51         int l = rank[nod[i].y-1],r = rank[nod[i].y+1];
     52         if (l > r) swap(l,r);
     53         ll w1 = getans(1,1,n,1,l,0)-nod[i].x*2+a[nod[i].y-1]+a[nod[i].y+1];
     54         ll w2 = getans(1,1,n,l,r,0)-nod[i].x*2+abs(a[nod[i].y-1]-a[nod[i].y+1]);
     55     }
     56     for (int i = 1;i <= n;i++) printf("%d
    ",sum+min(0,ans[i]));
     57     return 0;
     58 }
     59 void init(){
     60     for (int i = 2;i < n-1;i++){
     61         ll w = abs(a[i]-a[i+2])+abs(a[i-1]-a[i+1])-abs(a[i]-a[i-1])-abs(a[i+1]-a[i+2]);
     62         ans[i] = min(ans[i],w);
     63         ans[i+1] = min(ans[i+1],w);
     64     }
     65     
     66     for (int i = 2;i < n-1;i++){
     67         ll w = abs(a[i+1]-a[1])+abs(a[i-1]-a[1])+abs(a[2]-a[i])-abs(a[2]-a[1])-abs(a[i-1]-a[i])-abs(a[i+1]-a[i]);
     68         ans[1] = min(ans[1],w);
     69         ans[i] = min(ans[i],w);
     70         w = abs(a[i+1]-a[n])+abs(a[i-1]-a[n])+abs(a[n-1]-a[i])-abs(a[n-1]-a[n])-abs(a[i-1]-a[i])-abs(a[i+1]-a[i]);
     71         ans[n] = min(ans[n],w);
     72         ans[i] = min(ans[i],w);
     73     }
     74         
     75     ll w = abs(a[2]-a[n])+abs(a[1]-a[n-1])-abs(a[1]-a[2])-abs(a[n]-a[n-1]);
     76     ans[1] = min(ans[1],w);
     77     ans[n] = min(ans[n],w);
     78     w = abs(a[3]-a[1])-abs(a[3]-a[2]);
     79     ans[1] = min(ans[1],w);
     80     ans[2] = min(ans[2],w);
     81     w = abs(a[n-2]-a[n])-abs(a[n-2]-a[n-1]);
     82     ans[n] = min(ans[n],w);
     83     ans[n-1] = min(ans[n-1],w);
     84 }
     85 void insert(int p,int l,int r,int x,int y,int opt){
     86     if (l == r){
     87         sum[opt][l] += a[y];
     88         if (opt == 0) seg[opt][l] += a[y-1]+a[y+1];
     89         if (opt == 1) seg[opt][l] += abs(a[y-1]-a[y+1]);
     90         if (opt == 2) seg[opt][l] -= a[y-1]+a[y+1];
     91         return;
     92     }
     93     int mid = l + r >> 1;
     94     if (x <= mid) insert(p<<1,l,mid,x,y,opt);
     95     else insert(p<<1|1,mid+1,r,x,y,opt);
     96     update(p,opt); 
     97 }
     98 void update(int p,int opt){
     99     int u = p<<1,v = u|1;
    100     sum[opt][p] = sum[opt][u]+sum[opt][v];
    101     seg[opt][p] = seg[opt][u]+seg[opt][v];
    102 }
  • 相关阅读:
    欧拉定理证明&阶乘的逆元
    Tree POJ
    GCD
    java42
    java41
    java
    java40
    搭建两个网站的琐碎问题
    虚拟机从无到有,服务器从无到有的历程(在更)
    java39
  • 原文地址:https://www.cnblogs.com/victbr/p/7112971.html
Copyright © 2011-2022 走看看