zoukankan      html  css  js  c++  java
  • ReentrantLock实现原理

    在多线程操作过程中,锁是保证原子性和可见性的重要方式,synchronized关键字是隐式获取锁的方式,Lock类比synchronized关键字更加灵活,是显示获取锁的方式。本文将详细了解ReentrantLock类。

    1. ReentrantLock基本使用

    使用该类比较简单,初始化该类后,使用其提供的API去获取锁和释放锁,如下:

    public class ReentrantLockDemo {
        private static Integer count = 0;
        private static Lock lock = new ReentrantLock();
    
        public static void increment() {
            lock.lock();
            count++;
            lock.unlock();
        }
    
        public static void main(String[] args) {
            for (int i = 0; i < 1000; i++) {
                new Thread(ReentrantLockDemo::increment).start();
            }
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(count);
        }
    }
    

    使用上述lock和unlock方法,能保证同时只有一个线程能获取锁,其他线程处于阻塞队列中,当释放锁后,其他线程能再次获取锁,以此来保证锁区域的原子性,也能保证前一个线程的操作对后续线程操作的可见性。

    2. ReentrantLock底层实现

    先来看一下源码中该类的结构图:
    在这里插入图片描述
    ReentrantLock继承了AQS(AbstractQueuedSynchronizer)类,并且定义了同步器对象Sync。AQS类是实现锁的基础对象,在该类中定义了线程的同步状态及一个FIFO的阻塞队列。
    首先,来看ReentrantLock构造方法:

    public ReentrantLock() {
        sync = new NonfairSync();
    }
    
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }
    

    通过上述构造方法构建使用的同步器,默认是采用非公平锁的方式,可以通过构造传参进行选择。公平锁严格遵守FIFO模型,最先进入阻塞队列的线程在锁释放后最先执行。而非公平锁在锁释放后,任意线程均可抢占锁。
    lock()方法源码如下:

    public void lock() {
        sync.lock();
    }
    

    先来分析非公平锁的方式:

    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;
    
        /**
         * Performs lock.  Try immediate barge, backing up to normal
         * acquire on failure.
         */
        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }
        ...
    }
    

    在NonfairSync.lock()方法中,会调用Unsafe类的CAS方法修改线程状态,若能修改成功,则表示当前线程获得锁,会记录下当前线程信息;若CAS调用返回false,则调用AQS里面的acquire()方法

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    

    这里的tryAcquire()会调用ReentrantLock#NonfairSync中的tryAcquire方法,源码如下:

    protected final boolean  tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }
    
    abstract static class Sync extends AbstractQueuedSynchronizer {
    ...
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
    ...
    }
    

    在这个过程中,会再次判断线程的状态,若线程是无锁状态,则再次通过CAS获取锁。若当前线程再次获取锁,则直接增加获取锁的次数,这里是实现可重入锁的核心方法。
    若还是获取不到锁,回到AQS中的acquire方法,会将当前线程组装一个Node节点,然后添加到阻塞队列中

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    
    private Node addWaiter(Node mode) {
       Node node = new Node(Thread.currentThread(), mode);
       // Try the fast path of enq; backup to full enq on failure
       Node pred = tail;
       if (pred != null) {
           node.prev = pred;
           if (compareAndSetTail(pred, node)) {
               pred.next = node;
               return node;
           }
       }
       enq(node);
       return node;
    }
    
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
    
    final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
    
    static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }
    ...
    }
    

    通过AQS类中定义的compareAndSetHead和compareAndSetTail方法,将获取锁失败的线程构建成Node,并添加至一个双向链表中,然后在添加至阻塞队列时,将当前线程阻塞

    final boolean acquireQueued(final Node node, int arg) {
       boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                ...
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
    

    这里会借助LockSupport.park阻塞当前线程。当锁释放之后才会唤醒处于阻塞的线程。

    public void unlock() {
        sync.release(1);
    }
    
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    

    AQS类中的tryRelease()方法也是一个抽象方法,具体实现由子类进行实现,源码如下:

    abstract static class Sync extends AbstractQueuedSynchronizer {
    ...
    protected final boolean tryRelease(int releases) {
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        if (c == 0) {
            free = true;
            // 删除独占锁标识
            setExclusiveOwnerThread(null);
        }
        // 将state状态复原
        setState(c);
        return free;
    }
    }
    

    state记录了获取锁的次数,如果是重入锁,需要等当前线程将锁完全释放后,才会将独占锁的线程标识清空。
    在AQS的release方法中,若当前线程释放锁,且阻塞队列中有节点时,则会唤醒处于阻塞状态的下一个线程

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    
    private void unparkSuccessor(Node node) {
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);
    
        // 获取下一个节点,若下一个节点为空或者为取消状态,则从尾部往前找到当前节点后第一个未取消的节点
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        // 释放锁
        if (s != null)
            LockSupport.unpark(s.thread);
    }
    

    这里借助LockSupport.unpark唤醒处于双向链表中的下一个节点,直到所有的锁释放,程序执行结束。

    而公平锁在获取锁时会检查阻塞队列中是否有值,若有值,则会将当前线程加入阻塞队列:

    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (!hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
    

    其他的操作与非公平锁一致。

  • 相关阅读:
    高可用keepalived的抢占式与非抢占式
    keepalived搭建
    高可用概念
    Nginx优雅显示错误页面
    Nginx调整上传文件大小
    nginx的root和alias区别
    nginx的include
    每日总结2.18
    每日总结2.17
    每日总结2.16
  • 原文地址:https://www.cnblogs.com/vielat/p/15005169.html
Copyright © 2011-2022 走看看