% script to perform adaptive quadrature clear all, close all global pts % function to be integrated defined in routine f f = 'integrand'; a = 1; b = 3; pts = [a;b]; tol = input('Enter error tolerance: '); % this is just to plot the graph % it's usually a good idea to look at the integrand % if possible before you try to integrate it ezplot(f,[1,3]) disp('Hit any key to continue') pause hold on fa = feval(f,a); fb = feval(f,b); Sf_old = simp(a,b,f,fa,fb); Sf = adaptiveSimpson(a,b,f,fa,fb,tol,Sf_old) qpts = sort(pts); plot(qpts,zeros(length(pts),1),'rx') disp('number of function evaluations') disp(length(pts)) disp('Hit any key to continue') pause % now compare result with straight Simpson's rule % using the same number of points sum = 0; h = (b-a)/(length(pts)-1); for i=0:length(pts)-1, fxi = feval(f,a+i*h); if i == 0 | i == length(pts)-1, sum = sum + fxi; elseif mod(i,2) == 1, sum = sum + 4*fxi; else sum = sum + 2*fxi; end end disp('Simpson''s rule with the same number of points') sum = h/3*sum % compute exact solution % anti-derivative of integrand is 10*cos(10/x) % so ... exactSolution = 10*(cos(10/b)-cos(10/a)); errorAdaptiveSimpson = exactSolution - Sf errorUniformSimpson = exactSolution - sum