zoukankan      html  css  js  c++  java
  • 【JAVA集合】HashMap源码分析(转载)

    原文出处:http://www.cnblogs.com/chenpi/p/5280304.html

    以下内容基于jdk1.7.0_79源码;

    什么是HashMap

    基于哈希表的一个Map接口实现,存储的对象是一个键值对对象(Entry<K,V>);

    HashMap补充说明

    基于数组和链表实现,内部维护着一个数组table,该数组保存着每个链表的表头结点;查找时,先通过hash函数计算hash值,再根据hash值计算数组索引,然后根据索引找到链表表头结点,然后遍历查找该链表;

    HashMap数据结构

    画了个示意图,如下,左边的数组索引是根据hash值计算得到,不同hash值有可能产生一样的索引,即哈希冲突,此时采用链地址法处理哈希冲突,即将所有索引一致的节点构成一个单链表;

    HashMap继承的类与实现的接口

    Map接口,方法的含义很简单,基本上看个方法名就知道了,后面会在HashMap源码分析里详细说明

    AbstractMap抽象类中定义的方法

    HashMap源码分析,大部分都加了注释

    package java.util;
    import java.io.*;
    
    public class HashMap<K,V>
        extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable
    {
    
        /**
         * 默认初始容量,默认为2的4次方 = 16
         */
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        /**
         * 最大容量,默认为2的30次方
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;
    
        /**
         * 默认负载因子,默认为0.75
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
        /**
         *当数组表还没扩容的时候,一个共享的空表对象
         */
        static final Entry<?,?>[] EMPTY_TABLE = {};
    
        /**
         * 数组表,大小可以改变,且大小必须为2的幂
         */
        transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
    
        /**
         * 当前Map中key-value映射的个数
         */
        transient int size;
    
        /**
         * 下次扩容阈值,当size > capacity * load factor时,开始扩容
         */
        int threshold;
    
        /**
         * 负载因子
         */
        final float loadFactor;
    
        /**
         * Hash表结构性修改次数,用于实现迭代器快速失败行为
         */
        transient int modCount;
    
        /**
         * 容量阈值,默认大小为Integer.MAX_VALUE
         */
        static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
    
        /**
         * 静态内部类Holder,存放一些只能在虚拟机启动后才能初始化的值
         */
        private static class Holder {
    
            /**
             * 容量阈值,初始化hashSeed的时候会用到该值
             */
            static final int ALTERNATIVE_HASHING_THRESHOLD;
    
            static {
                //获取系统变量jdk.map.althashing.threshold
                String altThreshold = java.security.AccessController.doPrivileged(
                    new sun.security.action.GetPropertyAction(
                        "jdk.map.althashing.threshold"));
    
                int threshold;
                try {
                    threshold = (null != altThreshold)
                            ? Integer.parseInt(altThreshold)
                            : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;
    
                    // jdk.map.althashing.threshold系统变量默认为-1,如果为-1,则将阈值设为Integer.MAX_VALUE
                    if (threshold == -1) {
                        threshold = Integer.MAX_VALUE;
                    }
                    //阈值需要为正数
                    if (threshold < 0) {
                        throw new IllegalArgumentException("value must be positive integer.");
                    }
                } catch(IllegalArgumentException failed) {
                    throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
                }
    
                ALTERNATIVE_HASHING_THRESHOLD = threshold;
            }
        }
    
        /**
         * 计算hash值的时候需要用到
         */
        transient int hashSeed = 0;
    
        /**
         * 生成一个空的HashMap,并指定其容量大小和负载因子
         *
         */
        public HashMap(int initialCapacity, float loadFactor) {
            //保证初始容量大于等于0
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            //保证初始容量不大于最大容量MAXIMUM_CAPACITY
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            
            //loadFactor小于0或为无效数字
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            //负载因子
            this.loadFactor = loadFactor;
            //下次扩容大小
            threshold = initialCapacity;
            init();
        }
    
        /**
         * 生成一个空的HashMap,并指定其容量大小,负载因子使用默认的0.75
         *
         */
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * 生成一个空的HashMap,容量大小使用默认值16,负载因子使用默认值0.75
         */
        public HashMap() {
            this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * 根据指定的map生成一个新的HashMap,负载因子使用默认值,初始容量大小为
    * Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,DEFAULT_INITIAL_CAPACITY) */ public HashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); inflateTable(threshold); putAllForCreate(m); } //返回>=number的最小2的n次方值,如number=5,则返回8 private static int roundUpToPowerOf2(int number) { // assert number >= 0 : "number must be non-negative"; return number >= MAXIMUM_CAPACITY ? MAXIMUM_CAPACITY : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1; } /** * 对table扩容 */ private void inflateTable(int toSize) { // Find a power of 2 >= toSize //找一个值(2的n次方,且>=toSize) int capacity = roundUpToPowerOf2(toSize); //下次扩容阈值 threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1); table = new Entry[capacity]; initHashSeedAsNeeded(capacity); } // internal utilities void init() { } /** * 初始化hashSeed */ final boolean initHashSeedAsNeeded(int capacity) { boolean currentAltHashing = hashSeed != 0; boolean useAltHashing = sun.misc.VM.isBooted() && (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD); boolean switching = currentAltHashing ^ useAltHashing; if (switching) { hashSeed = useAltHashing ? sun.misc.Hashing.randomHashSeed(this) : 0; } return switching; } /** * 生成hash值 */ final int hash(Object k) { int h = hashSeed; //如果key是字符串,调用un.misc.Hashing.stringHash32生成hash值 //Oracle表示能生成更好的hash分布,不过这在jdk8中已删除 if (0 != h && k instanceof String) { return sun.misc.Hashing.stringHash32((String) k); } //一次散列,调用k的hashCode方法,与hashSeed做异或操作 h ^= k.hashCode(); // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). //二次散列, h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } /** * 返回hash值的索引,采用除模取余法,h & (length-1)操作 等价于 hash % length操作, 但&操作性能更优 */ static int indexFor(int h, int length) { // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2"; return h & (length-1); } /** * 返回key-value映射个数 */ public int size() { return size; } /** * 判断map是否为空 */ public boolean isEmpty() { return size == 0; } /** * 返回指定key对应的value */ public V get(Object key) { //key为null情况 if (key == null) return getForNullKey(); //根据key查找节点 Entry<K,V> entry = getEntry(key); //返回key对应的值 return null == entry ? null : entry.getValue(); } /** * 查找key为null的value,注意如果key为null,则其hash值为0,默认是放在table[0]里的 */ private V getForNullKey() { if (size == 0) { return null; } //在table[0]的链表上查找key为null的键值对,因为null默认是存在table[0]的桶里 for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } /** *判断是否包含指定的key */ public boolean containsKey(Object key) { return getEntry(key) != null; } /** * 根据key查找键值对,找不到返回null */ final Entry<K,V> getEntry(Object key) { if (size == 0) { return null; } //如果key为null,hash值为0,否则调用hash方法,对key生成hash值 int hash = (key == null) ? 0 : hash(key); //调用indexFor方法生成hash值的索引,遍历该索引下的链表,查找key“相等”的键值对 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } return null; } /** * 向map存入一个键值对,如果key已存在,则覆盖 */ public V put(K key, V value) { //数组为空,对数组扩容 if (table == EMPTY_TABLE) { inflateTable(threshold); } //对key为null的键值对调用putForNullKey处理 if (key == null) return putForNullKey(value); //生成hash值 int hash = hash(key); //生成hash值索引 int i = indexFor(hash, table.length); //查找是否有key“相等”的键值对,有的话覆盖 for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } //操作次数加一,用于迭代器快速失败行为 modCount++; //在指定hash值索引处的链表上增加该键值对 addEntry(hash, key, value, i); return null; } /** * 存放key为null的键值对,存放在索引为0的链表上,已存在的话,替换 */ private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { //已存在key为null,则替换 if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } //操作次数加一,用于迭代器快速失败行为 modCount++; //在指定hash值索引处的链表上增加该键值对 addEntry(0, null, value, 0); return null; } /** * 添加键值对 */ private void putForCreate(K key, V value) { //生成hash值 int hash = null == key ? 0 : hash(key); //生成hash值索引, int i = indexFor(hash, table.length); /** * key“相等”,则替换 */ for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.value = value; return; } } //在指定索引处的链表上创建该键值对 createEntry(hash, key, value, i); } //将制定map的键值对添加到map中 private void putAllForCreate(Map<? extends K, ? extends V> m) { for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) putForCreate(e.getKey(), e.getValue()); } /** * 对数组扩容 */ void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } //创建一个指定大小的数组 Entry[] newTable = new Entry[newCapacity]; transfer(newTable, initHashSeedAsNeeded(newCapacity)); //table索引替换成新数组 table = newTable; //重新计算阈值 threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1); } /** * 拷贝旧的键值对到新的哈希表中 */ void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; //遍历旧的数组 for (Entry<K,V> e : table) { while(null != e) { Entry<K,V> next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } //根据新的数组长度,重新计算索引, int i = indexFor(e.hash, newCapacity); //插入到链表表头 e.next = newTable[i]; //将e放到索引为i处 newTable[i] = e; //将e设置成下个节点 e = next; } } } /** * 将制定map的键值对put到本map,key“相等”的直接覆盖 */ public void putAll(Map<? extends K, ? extends V> m) { int numKeysToBeAdded = m.size(); if (numKeysToBeAdded == 0) return; //空map,扩容 if (table == EMPTY_TABLE) { inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold)); } /* * 判断是否需要扩容 */ if (numKeysToBeAdded > threshold) { int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); if (targetCapacity > MAXIMUM_CAPACITY) targetCapacity = MAXIMUM_CAPACITY; int newCapacity = table.length; while (newCapacity < targetCapacity) newCapacity <<= 1; if (newCapacity > table.length) resize(newCapacity); } //依次遍历键值对,并put for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) put(e.getKey(), e.getValue()); } /** * 移除指定key的键值对 */ public V remove(Object key) { Entry<K,V> e = removeEntryForKey(key); return (e == null ? null : e.value); } /** * 移除指定key的键值对 */ final Entry<K,V> removeEntryForKey(Object key) { if (size == 0) { return null; } //计算hash值及索引 int hash = (key == null) ? 0 : hash(key); int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; //头节点为table[i]的单链表上执行删除节点操作 while (e != null) { Entry<K,V> next = e.next; Object k; //找到要删除的节点 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * 删除指定键值对对象(Entry对象) */ final Entry<K,V> removeMapping(Object o) { if (size == 0 || !(o instanceof Map.Entry)) return null; Map.Entry<K,V> entry = (Map.Entry<K,V>) o; Object key = entry.getKey(); int hash = (key == null) ? 0 : hash(key); //得到数组索引 int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; //开始遍历该单链表 while (e != null) { Entry<K,V> next = e.next; //找到节点 if (e.hash == hash && e.equals(entry)) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * 清空map,将table数组所有元素设为null */ public void clear() { modCount++; Arrays.fill(table, null); size = 0; } /** * 判断是否含有指定value的键值对 */ public boolean containsValue(Object value) { if (value == null) return containsNullValue(); Entry[] tab = table; //遍历table数组 for (int i = 0; i < tab.length ; i++) //遍历每条单链表 for (Entry e = tab[i] ; e != null ; e = e.next) if (value.equals(e.value)) return true; return false; } /** * 判断是否含有value为null的键值对 */ private boolean containsNullValue() { Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value == null) return true; return false; } /** * 浅拷贝,键值对不复制 */ public Object clone() { HashMap<K,V> result = null; try { result = (HashMap<K,V>)super.clone(); } catch (CloneNotSupportedException e) { // assert false; } if (result.table != EMPTY_TABLE) { result.inflateTable(Math.min( (int) Math.min( size * Math.min(1 / loadFactor, 4.0f), // we have limits... HashMap.MAXIMUM_CAPACITY), table.length)); } result.entrySet = null; result.modCount = 0; result.size = 0; result.init(); result.putAllForCreate(this); return result; } //内部类,节点对象,每个节点包含下个节点的引用 static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; Entry<K,V> next; int hash; /** * 创建节点 */ Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } //获取节点的key public final K getKey() { return key; } //获取节点的value public final V getValue() { return value; } //设置新value,并返回旧的value public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } //判断key和value是否相同,两个都“相等”,返回true public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue()); } public final String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is * overwritten by an invocation of put(k,v) for a key k that's already * in the HashMap. */ void recordAccess(HashMap<K,V> m) { } /** * This method is invoked whenever the entry is * removed from the table. */ void recordRemoval(HashMap<K,V> m) { } } /** * 添加新节点,如有必要,执行扩容操作 */ void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } createEntry(hash, key, value, bucketIndex); } /** * 插入单链表表头 */ void createEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<>(hash, key, value, e); size++; } //hashmap迭代器 private abstract class HashIterator<E> implements Iterator<E> { Entry<K,V> next; // 下个键值对索引 int expectedModCount; // 用于判断快速失败行为 int index; // current slot Entry<K,V> current; // current entry HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } } public final boolean hasNext() { return next != null; } final Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry<K,V> e = next; if (e == null) throw new NoSuchElementException(); if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } current = e; return e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } //ValueIterator迭代器 private final class ValueIterator extends HashIterator<V> { public V next() { return nextEntry().value; } } //KeyIterator迭代器 private final class KeyIterator extends HashIterator<K> { public K next() { return nextEntry().getKey(); } } ////KeyIterator迭代器 private final class EntryIterator extends HashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // 返回迭代器方法 Iterator<K> newKeyIterator() { return new KeyIterator(); } Iterator<V> newValueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } // Views private transient Set<Map.Entry<K,V>> entrySet = null; /** * 返回一个set集合,包含key */ public Set<K> keySet() { Set<K> ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } private final class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return newKeyIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return HashMap.this.removeEntryForKey(o) != null; } public void clear() { HashMap.this.clear(); } } /** * 返回一个value集合,包含value */ public Collection<V> values() { Collection<V> vs = values; return (vs != null ? vs : (values = new Values())); } private final class Values extends AbstractCollection<V> { public Iterator<V> iterator() { return newValueIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsValue(o); } public void clear() { HashMap.this.clear(); } } /** * 返回一个键值对集合 */ public Set<Map.Entry<K,V>> entrySet() { return entrySet0(); } private Set<Map.Entry<K,V>> entrySet0() { Set<Map.Entry<K,V>> es = entrySet; return es != null ? es : (entrySet = new EntrySet()); } private final class EntrySet extends AbstractSet<Map.Entry<K,V>> { public Iterator<Map.Entry<K,V>> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K,V> e = (Map.Entry<K,V>) o; Entry<K,V> candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } public boolean remove(Object o) { return removeMapping(o) != null; } public int size() { return size; } public void clear() { HashMap.this.clear(); } } /** * map序列化,可实现深拷贝 */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); // Write out number of buckets if (table==EMPTY_TABLE) { s.writeInt(roundUpToPowerOf2(threshold)); } else { s.writeInt(table.length); } // Write out size (number of Mappings) s.writeInt(size); // Write out keys and values (alternating) if (size > 0) { for(Map.Entry<K,V> e : entrySet0()) { s.writeObject(e.getKey()); s.writeObject(e.getValue()); } } } private static final long serialVersionUID = 362498820763181265L; /** * 反序列化,读取字节码转为对象 */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold (ignored), loadfactor, and any hidden stuff s.defaultReadObject(); if (loadFactor <= 0 || Float.isNaN(loadFactor)) { throw new InvalidObjectException("Illegal load factor: " + loadFactor); } // set other fields that need values table = (Entry<K,V>[]) EMPTY_TABLE; // Read in number of buckets s.readInt(); // ignored. // Read number of mappings int mappings = s.readInt(); if (mappings < 0) throw new InvalidObjectException("Illegal mappings count: " + mappings); // capacity chosen by number of mappings and desired load (if >= 0.25) int capacity = (int) Math.min( mappings * Math.min(1 / loadFactor, 4.0f), // we have limits... HashMap.MAXIMUM_CAPACITY); // allocate the bucket array; if (mappings > 0) { inflateTable(capacity); } else { threshold = capacity; } init(); // Give subclass a chance to do its thing. // Read the keys and values, and put the mappings in the HashMap for (int i = 0; i < mappings; i++) { K key = (K) s.readObject(); V value = (V) s.readObject(); putForCreate(key, value); } } // These methods are used when serializing HashSets int capacity() { return table.length; } float loadFactor() { return loadFactor; } } }
  • 相关阅读:
    Windows API的CreateFile()中的OPEN_ALWAYS和CREATE_ALWAYS之间的差异
    Linux下的虚拟串口对(可用于在本机上模拟串口进行调试)
    [转&精]IO_STACK_LOCATION与IRP的一点笔记
    【转】在WIN7、WIN10操作系统用WebDAV映射网络驱动器需要的操作
    Unable to load one or more of the requested types. Retrieve the LoaderExceptions property for more information
    分布式处理大数据的目录及学习树
    利用docker将传统企业集中式架构转换为微服务架构的实践经验
    docker学习笔记5 端口映射与容器互联
    docker学习笔记4 数据管理、持久化
    docker学习笔记3 容器 container
  • 原文地址:https://www.cnblogs.com/vincent-blog/p/5285321.html
Copyright © 2011-2022 走看看