zoukankan      html  css  js  c++  java
  • 【转】Spark源码分析之-scheduler模块

    原文地址:http://jerryshao.me/architecture/2013/04/21/Spark%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E4%B9%8B-scheduler%E6%A8%A1%E5%9D%97/

     

     

    Background

    Spark在资源管理和调度方式上采用了类似于Hadoop YARN的方式,最上层是资源调度器,它负责分配资源和调度注册到Spark中的所有应用,Spark选用Mesos或是YARN等作为其资源调度框架。在每一个应用内部,Spark又实现了任务调度器,负责任务的调度和协调,类似于MapReduce。本质上,外层的资源调度和内层的任务调度相互独立,各司其职。本文对于Spark的源码分析主要集中在内层的任务调度器上,分析Spark任务调度器的实现。

    Scheduler模块整体架构

    scheduler模块主要分为两大部分:

    1. TaskSchedulerListenerTaskSchedulerListener部分的主要功能是监听用户提交的job,将job分解为不同的类型的stage以及相应的task,并向TaskScheduler提交task。

    2. TaskSchedulerTaskScheduler接收用户提交的task并执行。而TaskScheduler根据部署的不同又分为三个子模块:

      • ClusterScheduler
      • LocalScheduler
      • MesosScheduler

    TaskSchedulerListener

    Spark抽象了TaskSchedulerListener并在其上实现了DAGSchedulerDAGScheduler的主要功能是接收用户提交的job,将job根据类型划分为不同的stage,并在每一个stage内产生一系列的task,向TaskScheduler提交task。下面我们首先来看一下TaskSchedulerListener部分的类图:

    DAGScheduler class chart

    • 用户所提交的job在得到DAGScheduler的调度后,会被包装成ActiveJob,同时会启动JobWaiter阻塞监听job的完成状况。
    • 于此同时依据job中RDD的dependency和dependency属性(NarrowDependencyShufflerDependecy),DAGScheduler会根据依赖关系的先后产生出不同的stage DAG(result stage, shuffle map stage)。
    • 在每一个stage内部,根据stage产生出相应的task,包括ResultTask或是ShuffleMapTask,这些task会根据RDD中partition的数量和分布,产生出一组相应的task,并将其包装为TaskSet提交到TaskScheduler上去。

    RDD的依赖关系和Stage的分类

    在Spark中,每一个RDD是对于数据集在某一状态下的表现形式,而这个状态有可能是从前一状态转换而来的,因此换句话说这一个RDD有可能与之前的RDD(s)有依赖关系。根据依赖关系的不同,可以将RDD分成两种不同的类型:Narrow DependencyWide Dependency

    • Narrow Dependency指的是 child RDD只依赖于parent RDD(s)固定数量的partition。
    • Wide Dependency指的是child RDD的每一个partition都依赖于parent RDD(s)所有partition。

    它们之间的区别可参看下图:

    RDD dependecies

    根据RDD依赖关系的不同,Spark也将每一个job分为不同的stage,而stage之间的依赖关系则形成了DAG。对于Narrow Dependency,Spark会尽量多地将RDD转换放在同一个stage中;而对于Wide Dependency,由于Wide Dependency通常意味着shuffle操作,因此Spark会将此stage定义为ShuffleMapStage,以便于向MapOutputTracker注册shuffle操作。对于stage的划分可参看下图,Spark通常将shuffle操作定义为stage的边界。

    different stage boundary

    DAGScheduler

    在用户创建SparkContext对象时,Spark会在内部创建DAGScheduler对象,并根据用户的部署情况,绑定不同的TaskSechduler,并启动DAGcheduler

    private var taskScheduler: TaskScheduler = {
        //...
    }
    taskScheduler.start()
    private var dagScheduler = new DAGScheduler(taskScheduler)
    dagScheduler.start()

    DAGScheduler的启动会在内部创建daemon线程,daemon线程调用run()从block queue中取出event进行处理。

    run()会调用processEvent来处理不同的event。 

    private def run() {
      SparkEnv.set(env)
      while (true) {
        val event = eventQueue.poll(POLL_TIMEOUT, TimeUnit.MILLISECONDS)
        if (event != null) {
          logDebug("Got event of type " + event.getClass.getName)
        }
        if (event != null) {
          if (processEvent(event)) {
            return
          }
        }
        val time = System.currentTimeMillis() // TODO: use a pluggable clock for testability
        if (failed.size > 0 && time > lastFetchFailureTime + RESUBMIT_TIMEOUT) {
          resubmitFailedStages()
        } else {
          submitWaitingStages()
        }
      }
    }

    DAGScheduler处理的event包括:

    • JobSubmitted
    • CompletionEvent
    • ExecutorLost
    • TaskFailed
    • StopDAGScheduler

    根据event的不同调用不同的方法去处理。

    本质上DAGScheduler是一个生产者-消费者模型,用户和TaskSchduler产生event将其放入block queue,daemon线程消费event并处理相应事件。

    Job的生与死

    既然用户提交的job最终会交由DAGScheduler去处理,那么我们就来研究一下DAGScheduler处理job的整个流程。在这里我们分析两种不同类型的job的处理流程。

    1.没有shuffle和reduce的job

    val textFile = sc.textFile("README.md")
    textFile.filter(line => line.contains("Spark")).count()

    2.有shuffle和reduce的job

    val textFile = sc.textFile("README.md")
     textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)

    首先在对RDDcount()reduceByKey()操作都会调用SparkContextrunJob()来提交job,而SparkContextrunJob()最终会调用DAGSchedulerrunJob()

    runJob()会调用prepareJob()对job进行预处理,封装成JobSubmitted事件,放入queue中,并阻塞等待job完成

    def runJob[T, U: ClassManifest](
        finalRdd: RDD[T],
        func: (TaskContext, Iterator[T]) => U,
        partitions: Seq[Int],
        callSite: String,
        allowLocal: Boolean,
        resultHandler: (Int, U) => Unit)
    {
      if (partitions.size == 0) {
        return
      }
      val (toSubmit, waiter) = prepareJob(
          finalRdd, func, partitions, callSite, allowLocal, resultHandler)
      eventQueue.put(toSubmit)
      waiter.awaitResult() match {
        case JobSucceeded => {}
        case JobFailed(exception: Exception) =>
          logInfo("Failed to run " + callSite)
          throw exception
      }
    }

    当daemon线程的processEvent()从queue中取出JobSubmitted事件后,会根据job划分出不同的stage,并且提交stage:

    首先,对于任何的job都会产生出一个finalStage来产生和提交task。其次对于某些简单的job,它没有依赖关系,并且只有一个partition,这样的job会使用local thread处理而并非提交到TaskScheduler上处理。

    case JobSubmitted(finalRDD, func, partitions, allowLocal, callSite, listener) =>
      val runId = nextRunId.getAndIncrement()
      val finalStage = newStage(finalRDD, None, runId)
      val job = new ActiveJob(runId, finalStage, func, partitions, callSite, listener)
      clearCacheLocs()
      if (allowLocal && finalStage.parents.size == 0 && partitions.length == 1) {
        runLocally(job)
      } else {
        activeJobs += job
        resultStageToJob(finalStage) = job
        submitStage(finalStage)
      }

    其次,产生finalStage后,需要调用submitStage(),它根据stage之间的依赖关系得出stage DAG,并以依赖关系进行处理:

    private def submitStage(stage: Stage) {
      if (!waiting(stage) && !running(stage) && !failed(stage)) {
        val missing = getMissingParentStages(stage).sortBy(_.id)
        if (missing == Nil) {
          submitMissingTasks(stage)
          running += stage
        } else {
          for (parent <- missing) {
            submitStage(parent)
          }
          waiting += stage
        }
      }
    }

    对于新提交的job,finalStage的parent stage还未获得,因此submitStage会调用getMissingParentStages()来获得依赖关系:

    private def getMissingParentStages(stage: Stage): List[Stage] = {
      val missing = new HashSet[Stage]
      val visited = new HashSet[RDD[_]]
      def visit(rdd: RDD[_]) {
        if (!visited(rdd)) {
          visited += rdd
          if (getCacheLocs(rdd).contains(Nil)) {
            for (dep <- rdd.dependencies) {
              dep match {
                case shufDep: ShuffleDependency[_,_] =>
                  val mapStage = getShuffleMapStage(shufDep, stage.priority)
                  if (!mapStage.isAvailable) {
                    missing += mapStage
                  }
                case narrowDep: NarrowDependency[_] =>
                  visit(narrowDep.rdd)
              }
            }
          }
        }
      }
      visit(stage.rdd)
      missing.toList
    }

    这里parent stage是通过RDD的依赖关系递归遍历获得。对于Wide Dependecy也就是Shuffle Dependecy,Spark会产生新的mapStage作为finalStage的parent,而对于Narrow Dependecy Spark则不会产生新的stage。这里对stage的划分是按照上面提到的作为划分依据的,因此对于本段开头提到的两种job,第一种job只会产生一个finalStage,而第二种job会产生finalStagemapStage

    当stage DAG产生以后,针对每个stage需要产生task去执行,故在这会调用submitMissingTasks()

    private def submitMissingTasks(stage: Stage) {
      val myPending = pendingTasks.getOrElseUpdate(stage, new HashSet)
      myPending.clear()
      var tasks = ArrayBuffer[Task[_]]()
      if (stage.isShuffleMap) {
        for (p <- 0 until stage.numPartitions if stage.outputLocs(p) == Nil) {
          val locs = getPreferredLocs(stage.rdd, p)
          tasks += new ShuffleMapTask(stage.id, stage.rdd, stage.shuffleDep.get, p, locs)
        }
      } else {
        val job = resultStageToJob(stage)
        for (id <- 0 until job.numPartitions if (!job.finished(id))) {
          val partition = job.partitions(id)
          val locs = getPreferredLocs(stage.rdd, partition)
          tasks += new ResultTask(stage.id, stage.rdd, job.func, partition, locs, id)
        }
      }
      if (tasks.size > 0) {
        myPending ++= tasks
        taskSched.submitTasks(
          new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.priority))
        if (!stage.submissionTime.isDefined) {
          stage.submissionTime = Some(System.currentTimeMillis())
        }
      } else {
        running -= stage
      }
    }

    首先根据stage所依赖的RDD的partition的分布,会产生出与partition数量相等的task,这些task根据partition的locality进行分布;其次对于finalStage或是mapStage会产生不同的task;最后所有的task会封装到TaskSet内提交到TaskScheduler去执行。

    至此job在DAGScheduler内的启动过程全部完成,交由TaskScheduler执行task,当task执行完后会将结果返回给DAGSchedulerDAGScheduler调用handleTaskComplete()处理task返回:

    private def handleTaskCompletion(event: CompletionEvent) {
      val task = event.task
      val stage = idToStage(task.stageId)
      def markStageAsFinished(stage: Stage) = {
        val serviceTime = stage.submissionTime match {
          case Some(t) => "%.03f".format((System.currentTimeMillis() - t) / 1000.0)
          case _ => "Unkown"
        }
        logInfo("%s (%s) finished in %s s".format(stage, stage.origin, serviceTime))
        running -= stage
      }
      event.reason match {
        case Success =>
            ...
          task match {
            case rt: ResultTask[_, _] =>
              ...
            case smt: ShuffleMapTask =>
              ...
          }
        case Resubmitted =>
          ...
        case FetchFailed(bmAddress, shuffleId, mapId, reduceId) =>
          ...
        case other =>
          abortStage(idToStage(task.stageId), task + " failed: " + other)
      }
    }

    每个执行完成的task都会将结果返回给DAGSchedulerDAGScheduler根据返回结果来进行进一步的动作。

    RDD的计算

    RDD的计算是在task中完成的。我们之前提到task分为ResultTaskShuffleMapTask,我们分别来看一下这两种task具体的执行过程。

    • ResultTask

    override def run(attemptId: Long): U = {
        val context = new TaskContext(stageId, partition, attemptId)
        try {
          func(context, rdd.iterator(split, context))
        } finally {
          context.executeOnCompleteCallbacks()
        }
      }
    • ShuffleMapTask

     override def run(attemptId: Long): MapStatus = {
        val numOutputSplits = dep.partitioner.numPartitions
      
        val taskContext = new TaskContext(stageId, partition, attemptId)
        try {
          val buckets = Array.fill(numOutputSplits)(new ArrayBuffer[(Any, Any)])
          for (elem <- rdd.iterator(split, taskContext)) {
            val pair = elem.asInstanceOf[(Any, Any)]
            val bucketId = dep.partitioner.getPartition(pair._1)
            buckets(bucketId) += pair
          }
      
          val compressedSizes = new Array[Byte](numOutputSplits)
      
          val blockManager = SparkEnv.get.blockManager
          for (i <- 0 until numOutputSplits) {
            val blockId = "shuffle_" + dep.shuffleId + "_" + partition + "_" + i
            val iter: Iterator[(Any, Any)] = buckets(i).iterator
            val size = blockManager.put(blockId, iter, StorageLevel.DISK_ONLY, false)
            compressedSizes(i) = MapOutputTracker.compressSize(size)
          }
      
          return new MapStatus(blockManager.blockManagerId, compressedSizes)
        } finally {
          taskContext.executeOnCompleteCallbacks()
        }
      }

    ResultTaskShuffleMapTask都会调用RDDiterator()来计算和转换RDD,不同的是:ResultTask转换完RDD后调用func()计算结果;而ShufflerMapTask则将其放入blockManager中用来shuffle。

     

    RDD的计算调用iterator()iterator()在内部调用compute()RDD依赖关系的根开始计算:

    final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
      if (storageLevel != StorageLevel.NONE) {
        SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
      } else {
        computeOrReadCheckpoint(split, context)
      }
    }
    private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] = {
      if (isCheckpointed) {
        firstParent[T].iterator(split, context)
      } else {
        compute(split, context)
      }
    } 

    至此大致分析了TaskSchedulerListener,包括DAGScheduler内部的结构,job生命周期内的活动,RDD是何时何地计算的。接下来我们分析一下task在TaskScheduler内干了什么。

    TaskScheduler

    前面也提到了Spark实现了三种不同的TaskScheduler,包括LocalShedulerClusterSchedulerMesosSchedulerLocalSheduler是一个在本地执行的线程池,DAGScheduler提交的所有task会在线程池中被执行,并将结果返回给DAGSchedulerMesosScheduler依赖于Mesos进行调度,笔者对Mesos了解甚少,因此不做分析。故此章节主要分析ClusterScheduler模块。

    ClusterScheduler模块与deploy模块和executor模块耦合较为紧密,因此在分析ClUsterScheduler时也会顺带介绍deploy和executor模块。

    首先我们来看一下ClusterScheduler的类图:

    ClusterScheduler

    ClusterScheduler的启动会伴随SparkDeploySchedulerBackend的启动,而backend会将自己分为两个角色:首先是driver,driver是一个local运行的actor,负责与remote的executor进行通行,提交任务,控制executor;其次是StandaloneExecutorBackend,Spark会在每一个slave node上启动一个StandaloneExecutorBackend进程,负责执行任务,返回执行结果。

    ClusterScheduler的启动

    SparkContext实例化的过程中,ClusterScheduler被随之实例化,同时赋予其SparkDeploySchedulerBackend

     master match {
          ...
        case SPARK_REGEX(sparkUrl) =>
          val scheduler = new ClusterScheduler(this)
          val backend = new SparkDeploySchedulerBackend(scheduler, this, sparkUrl, appName)
          scheduler.initialize(backend)
          scheduler
        case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) =>
          ...
        case _ =>
          ...
      }
    }
    taskScheduler.start()

    ClusterScheduler的启动会启动SparkDeploySchedulerBackend,同时启动daemon进程来检查speculative task:

    override def start() {
      backend.start()
      if (System.getProperty("spark.speculation", "false") == "true") {
        new Thread("ClusterScheduler speculation check") {
          setDaemon(true)
          override def run() {
            while (true) {
              try {
                Thread.sleep(SPECULATION_INTERVAL)
              } catch {
                case e: InterruptedException => {}
              }
              checkSpeculatableTasks()
            }
          }
        }.start()
      }
    }

    SparkDeploySchedulerBacked的启动首先会调用父类的start(),接着它会启动client,并由client连接到master向每一个node的worker发送请求启动StandaloneExecutorBackend。这里的client、master、worker涉及到了deploy模块,暂时不做具体介绍。而StandaloneExecutorBackend则涉及到了executor模块,它主要的功能是在每一个node创建task可以运行的环境,并让task在其环境中运行。

    override def start() {
      super.start()
      val driverUrl = "akka://spark@%s:%s/user/%s".format(
        System.getProperty("spark.driver.host"), System.getProperty("spark.driver.port"),
        StandaloneSchedulerBackend.ACTOR_NAME)
      val args = Seq(driverUrl, "", "", "")
      val command = Command("spark.executor.StandaloneExecutorBackend", args, sc.executorEnvs)
      val sparkHome = sc.getSparkHome().getOrElse(
        throw new IllegalArgumentException("must supply spark home for spark standalone"))
      val appDesc = new ApplicationDescription(appName, maxCores, executorMemory, command, sparkHome)
      client = new Client(sc.env.actorSystem, master, appDesc, this)
      client.start()
    }

    StandaloneSchedulerBackend中会创建DriverActor,它就是local的driver,以actor的方式与remote的executor进行通信。

    override def start() {
      val properties = new ArrayBuffer[(String, String)]
      val iterator = System.getProperties.entrySet.iterator
      while (iterator.hasNext) {
        val entry = iterator.next
        val (key, value) = (entry.getKey.toString, entry.getValue.toString)
        if (key.startsWith("spark.")) {
          properties += ((key, value))
        }
      }
      driverActor = actorSystem.actorOf(
        Props(new DriverActor(properties)), name = StandaloneSchedulerBackend.ACTOR_NAME)
    }

    在client实例化之前,会将StandaloneExecutorBackend的启动环境作为参数传递给client,而client启动时会将此提交给master,由master分发给所有node上的worker,worker会配置环境并创建进程启动StandaloneExecutorBackend

    至此ClusterScheduler的启动,local driver的创建,remote executor环境的启动所有过程都已结束,ClusterScheduler等待DAGScheduler提交任务。

    ClusterScheduler提交任务

    DAGScheduler会调用ClusterScheduler提交任务,任务会被包装成TaskSetManager并等待调度:

    override def submitTasks(taskSet: TaskSet) {
      val tasks = taskSet.tasks
      logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
      this.synchronized {
        val manager = new TaskSetManager(this, taskSet)
        activeTaskSets(taskSet.id) = manager
        activeTaskSetsQueue += manager
        taskSetTaskIds(taskSet.id) = new HashSet[Long]()
        if (hasReceivedTask == false) {
          starvationTimer.scheduleAtFixedRate(new TimerTask() {
            override def run() {
              if (!hasLaunchedTask) {
                logWarning("Initial job has not accepted any resources; " +
                  "check your cluster UI to ensure that workers are registered")
              } else {
                this.cancel()
              }
            }
          }, STARVATION_TIMEOUT, STARVATION_TIMEOUT)
        }
        hasReceivedTask = true;
      }
      backend.reviveOffers()
    }

    在任务提交的同时会启动定时器,如果任务还未被执行,定时器持续发出警告直到任务被执行。

    同时会调用StandaloneSchedulerBackendreviveOffers(),而它则会通过actor向driver发送ReviveOffers,driver收到ReviveOffers后调用makeOffers()

    // Make fake resource offers on just one executor
    def makeOffers(executorId: String) {
      launchTasks(scheduler.resourceOffers(
        Seq(new WorkerOffer(executorId, executorHost(executorId), freeCores(executorId)))))
    }
    // Launch tasks returned by a set of resource offers
    def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
      for (task <- tasks.flatten) {
        freeCores(task.executorId) -= 1
        executorActor(task.executorId) ! LaunchTask(task)
      }
    }

    makeOffers()会向ClusterScheduler申请资源,并向executor提交LauchTask请求。

    接下来LaunchTask会进入executor模块,StandaloneExecutorBackend在收到LaunchTask请求后会调用Executor执行task:

    override def receive = {
      case RegisteredExecutor(sparkProperties) =>
        ...  
      case RegisterExecutorFailed(message) =>
        ...
      case LaunchTask(taskDesc) =>
        logInfo("Got assigned task " + taskDesc.taskId)
        executor.launchTask(this, taskDesc.taskId, taskDesc.serializedTask)
      case Terminated(_) | RemoteClientDisconnected(_, _) | RemoteClientShutdown(_, _) =>
        ...
    }
    def launchTask(context: ExecutorBackend, taskId: Long, serializedTask: ByteBuffer) {
      threadPool.execute(new TaskRunner(context, taskId, serializedTask))
    }

    Executor内部是一个线程池,每一个提交的task都会包装为TaskRunner交由threadpool执行:

    class TaskRunner(context: ExecutorBackend, taskId: Long, serializedTask: ByteBuffer)
      extends Runnable {
      override def run() {
        SparkEnv.set(env)
        Thread.currentThread.setContextClassLoader(urlClassLoader)
        val ser = SparkEnv.get.closureSerializer.newInstance()
        logInfo("Running task ID " + taskId)
        context.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
        try {
          SparkEnv.set(env)
          Accumulators.clear()
          val (taskFiles, taskJars, taskBytes) = Task.deserializeWithDependencies(serializedTask)
          updateDependencies(taskFiles, taskJars)
          val task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
          logInfo("Its generation is " + task.generation)
          env.mapOutputTracker.updateGeneration(task.generation)
          val value = task.run(taskId.toInt)
          val accumUpdates = Accumulators.values
          val result = new TaskResult(value, accumUpdates)
          val serializedResult = ser.serialize(result)
          logInfo("Serialized size of result for " + taskId + " is " + serializedResult.limit)
          context.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
          logInfo("Finished task ID " + taskId)
        } catch {
          case ffe: FetchFailedException => {
            val reason = ffe.toTaskEndReason
            context.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))
          }
          case t: Throwable => {
            val reason = ExceptionFailure(t)
            context.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))
            // TODO: Should we exit the whole executor here? On the one hand, the failed task may
            // have left some weird state around depending on when the exception was thrown, but on
            // the other hand, maybe we could detect that when future tasks fail and exit then.
            logError("Exception in task ID " + taskId, t)
            //System.exit(1)
          }
        }
      }
    }

    其中task.run()则真正执行了task中的任务,如前RDD的计算章节所述。返回值被包装成TaskResult返回。

    至此task在ClusterScheduler内运行的流程有了一个大致的介绍,当然这里略掉了许多异常处理的分支,但这不影响我们对主线的了解。

    END

    至此对Spark的Scheduler模块的主线做了一个顺藤摸瓜式的介绍,Scheduler模块作为Spark最核心的模块之一,充分体现了Spark与MapReduce的不同之处,体现了Spark DAG思想的精巧和设计的优雅。

    当然Spark的代码仍然在积极开发之中,当前的源码分析在过不久后可能会变得没有意义,但重要的是体会Spark区别于MapReduce的设计理念,以及DAG思想的应用。DAG作为对MapReduce框架的改进越来越受到大数据界的重视,hortonworks也提出了类似DAG的框架tez作为对MapReduce的改进。

  • 相关阅读:
    Jetson TX1使用usb camera采集图像 (2)
    Jetson TX1安装pyTorch
    Jetson TX1 install Opencv3
    Jetson TX1使用usb camera采集图像 (1)
    win10双系统安装卸载ubuntu
    弱监督下的目标检测算法
    javascript高级程序设计读书笔记
    好用的linux命令
    正则表达式学习
    yii执行原理
  • 原文地址:https://www.cnblogs.com/vincent-hv/p/3334715.html
Copyright © 2011-2022 走看看