zoukankan      html  css  js  c++  java
  • 【Computer Vision】角点检测和匹配——Harris算子

    一、基本概念

    角点corner:可以将角点看做两个边缘的交叉处,在两个方向上都有较大的变化。具体可由下图中分辨出来:

    兴趣点interest point:兴趣点是图像中能够较鲁棒的检测出来的点,它不仅仅局限于角点. 也可以是灰度图像极大值或者极小值点等

    二、Harris角点检测

    Harris 算子是 Haris & Stephens 1988年在 "A Combined Corner and Edge Detector" 中提出的 提出的检测算法, 现在已经成为图像匹配中常用的算法.

     对于一幅RGB图像我们很很容易得到corner 是各个方向梯度值较大的点, 定义 函数WSSD(Weighted Sum Squared Difference)为:

    $$S(x,y) = sum_{u} sum_{v}w(u,v)(I((u+x,v+y)-I(u,v))^2 (1)$$

    其中$w(u,v)$可以看作采样窗,可以选择矩形窗函数,也可以选择高斯窗函数:

    $I(u+x,v+y)-I(u,v)$可以看作像素值变化量(梯度):

    使用泰勒展开:$I(u+x,v+y) approx I(u,v)+I_x(u,v)x+I_y(u,v)y (2)$

    (1)代入(2) $S(x,y) approx sum_u sum_v w(u,v) (I_x(u,v)x + I_y(u,v)y)^2$

    写成$S(x,y) approx (x,y) A (x,y)^T $

    其中 A 为 二阶梯度矩阵(structure tensor/ second-moment matrix)

    $$A = sum_u sum_v w(u,v) egin{bmatrix} I_x^2& I_x I_y \ I_x I_y & I_y^2 end{bmatrix} $$

    将A定义为Harris Matrix,A 的特征值有三种情况:

    1. $lambda_1 approx 0, lambda_2 approx 0$,那么点$x$不是兴趣点

    2. $lambda_1 approx 0, lambda_2$为一个较大的正数, 那么点$x$为边缘点(edge)

    3. $lambda_1, lambda_2$都为一个较大的正数, 那么点$x$为角点(corner)

    由于特征值的计算是 computationally expensive,引入如下函数

    $M_c = lambda_1lambda_2 - kappa(lambda_1+lambda_2)^2 = det(A) - kappa trace^2(A) $

    为了去除加权常数$kappa$ 直接计算

    $M_{c}^{'}  =  frac{det(A)}{trace(A)+epsilon}$

    三、角点匹配

     Harris角点检测仅仅检测出兴趣点位置,然而往往我们进行角点检测的目的是为了进行图像间的兴趣点匹配,我们在每一个兴趣点加入descriptors描述子信息,给出比较描述子信息的方法. Harris角点的,描述子是由周围像素值块batch的灰度值,以及用于比较归一化的相关矩阵构成。

    通常,两个大小相同的像素块I_1(x)和I_2(x) 的相关矩阵为:
    $$c(I_1,I_2) = sum_x f(I_1(x),I_2(x))$$

    $f函数随着方法变化而变化,c(I_1,I_2)$值越大,像素块相似度越高.

    对互相关矩阵进行归一化得到normalized cross correlation :

    $$ncc(I_1,I_2) = frac{1}{n-2} sum_x frac{(I_1(x)-mu_1)}{sigma_1} cdot frac{(I_2(x)-mu_2)}{sigma_2}$$

    其中$mu$为像素块的均值,sigma为标准差. ncc对图像的亮度变化具有更好的稳健性.

    四、python实现

    python版本:2.7

    依赖包: numpy,scipy,PIL, matplotlib

     图片:

    trees_002.jpg

    trees003.jpg

    from PIL import Image
    from scipy.ndimage import filters
    from numpy import *
    from pylab import *
    
    def compute_harris_response(im,sigma=3):
        """Compute the Harris corner detector response function for each 
        pixel in a graylevel image."""
    
        #derivative
        imx = zeros(im.shape)
        filters.gaussian_filter(im,(sigma,sigma),(0,1),imx)
    
        imy = zeros(im.shape)
        filters.gaussian_filter(im,(sigma,sigma),(1,0),imy)
    
        #compute components of the Harris matrix
    
        Wxx = filters.gaussian_filter(imx*imx,sigma)
        Wxy = filters.gaussian_filter(imx*imy,sigma)
        Wyy = filters.gaussian_filter(imy*imy,sigma)
    
        #determinant and trace
    
        Wdet = Wxx*Wyy-Wxy**2
        Wtr = Wxx+Wyy
        return Wdet/Wtr
    
    
    def get_harris_points(harrisim,min_dist=10,threshold=0.1):
        """Return corners from a Harris response image min_dist is the
        minimum number of pixels separating corners and image boundary."""
    
        #find top corner candidates above a threshold
        corner_threshold  = harrisim.max()*threshold
        harrisim_t = 1*(harrisim>corner_threshold)
    
        #get coordiantes of candidate
        coords = array(harrisim_t.nonzero()).T
    
        #...and their valus
        candicates_values = [harrisim[c[0],c[1]] for c in coords]
    
        #sort candicates
        index = argsort(candicates_values)
    
        #sort allowed point loaction in array
        allowed_location = zeros(harrisim.shape)
        allowed_location[min_dist:-min_dist,min_dist:-min_dist] = 1
    
        #select the best points taking min_distance into account 
        filtered_coords = []
        for i in index:
            if  allowed_location[coords[i,0],coords[i,1]]==1:
                filtered_coords.append(coords[i])
                allowed_location[(coords[i,0]-min_dist):(coords[i,0]+min_dist),
                                  (coords[i,1]-min_dist):(coords[i,1]+min_dist)]=0
        return filtered_coords
    
    def plot_harris_points(image,filtered_coords):
        """plots corners found in image."""
        figure
        gray()
        imshow(image)
        plot([p[1] for p in filtered_coords],[p[0] for p in filtered_coords],'*')
        axis('off')
        show()
    
    def get_descriptors(image,filter_coords,wid=5):
        """For each point return pixel values around the point using a neihborhood
        of 2*width+1."""
        desc=[]
        for coords in filter_coords:
            patch = image[coords[0]-wid:coords[0]+wid+1,
                          coords[1]-wid:coords[1]+wid+1].flatten()
            desc.append(patch) # use append to add new elements
        return desc
    
    def match(desc1,desc2,threshold=0.5):
        """For each corner point descriptor in the first image, select its match
        to second image using normalized cross correlation."""
    
        n = len(desc1[0]) #num of harris descriptors
        #pair-wise distance
        d = -ones((len(desc1),len(desc2)))
        for i in range(len(desc1)):
            for j in range(len(desc2)):
                d1 = (desc1[i]-mean(desc1[i]))/std(desc1[i])
                d2 = (desc2[j]-mean(desc2[j]))/std(desc2[j])
                ncc_value = sum(d1*d2)/(n-1)
                if ncc_value>threshold:
                    d[i,j] = ncc_value
    
        ndx = argsort(-d) 
        matchscores = ndx[:,0]
    
        return matchscores
    
    def match_twosided(desc1,desc2,threshold=0.5):
        """two sided symmetric version of match()."""
        matches_12 = match(desc1,desc2,threshold)
        matches_21 = match(desc2,desc1,threshold)
    
        ndx_12 = where(matches_12>=0)[0]
        print ndx_12.dtype
        # remove matches that are not symmetric
        for n in ndx_12:
            if matches_21[matches_12[n]] !=n:
                matches_12[n] = -1
        return matches_12    
    
    def appendimages(im1,im2):
        """Return a new image that appends that two images side-by-side."""
    
        #select the image with the fewest rows and fill in enough empty rows
        rows1 = im1.shape[0]
        rows2 = im2.shape[0]
    
        if rows1<rows2:
            im1 = concatenate((im1,zeros((rows2-rows1,im1.shape[1]))),axis=0)
        elif rows1<rows2:
            im2 = concatenate((im2,zeros((rows1-rows2,im2.shape[1]))),axis=0)
        return concatenate((im1,im2),axis=1)
    def plot_matches(im1,im2,locs1,locs2,matchscores,show_below=True):
        """show a figure with lines joinging the accepted matches
        Input:im1,im2(images as arrays),locs1,locs2,(feature locations),
              metachscores(as output from 'match()'),
              show_below(if images should be shown matches)."""
        im3 = appendimages(im1,im2)
        if show_below:
            im3 = vstack((im3,im3))
        
        imshow(im3)
    
        cols1 = im1.shape[1]
        for i,m in enumerate(matchscores):
            if m>0:
                plot([locs1[i][1],locs2[m][1]+cols1],[locs1[i][0],locs2[m][0]],'c')
        axis('off')
    
    """
    im = array(Image.open('F:/images/lena.bmp').convert('1'))
    harrisim = compute_harris_response(im)
    filtered_coords = get_harris_points(harrisim,6)
    plot_harris_points(im,filtered_coords)
    """
    
    im1 = array(Image.open('trees_002.jpg').convert('L'))
    im2 = array(Image.open('trees_003.jpg').convert('L'))
    
    wid = 5
    
    harrisim = compute_harris_response(im1,5)
    filtered_coords1 = get_harris_points(harrisim,wid+1)
    d1 = get_descriptors(im1,filtered_coords1,wid)
    
    harrisim = compute_harris_response(im2,5)
    filtered_coords2 = get_harris_points(harrisim,wid+1)
    d2 = get_descriptors(im2,filtered_coords2,wid)
    
    print 'starting matching'
    matches = match_twosided(d1,d2)
    
    figure()
    gray()
    plot_matches(im1,im2,filtered_coords1,filtered_coords2,matches) show()

     运行结果:

     

  • 相关阅读:
    反射类的字段
    反射类的方法(其中main方法比较特殊)
    反这类的构造函数(写框架时才会用到反射类)
    枚举
    进制转换小算法
    第一个小程序:用户登录
    Hello World!
    潭州课堂25班:Ph201805201 tornado 项目 第五课 增加用户系统-用户中心(课堂笔记)
    潭州课堂25班:Ph201805201 tornado 项目 第四课 增加用户注册登录(课堂笔记)
    潭州课堂25班:Ph201805201 tornado 项目 第三课 项目 图片上传,展示 (课堂笔记)
  • 原文地址:https://www.cnblogs.com/vincentcheng/p/7151614.html
Copyright © 2011-2022 走看看