zoukankan      html  css  js  c++  java
  • 【Paper Reading】Bayesian Face Sketch Synthesis

    Contribution: 1) Systematic interpretation to existing face sketch synthesis methods. 2) Bayesian face sketch synthesis: apply the spatial neighboring constraint to both the neighbor selection model and the wieght computation model.

    Problem:

    s代表target patch, t代表test patch,$X_i = {x_k^i}_{k=1}^K和Y_i = {x_k^i}_{k=1}^K$分别为 test patch 的K个最近邻photo patches和sketch patches. target patch 由下面公式计算得到:

    $$s_i  = Y_i cdot w_i = sum_{k=1}^K w_{ik}y_k.$$

    给定test patch生成target patch,等价于最大后验概率$p(s|t) = p(s_1,...,s_N|t_1,...,t_N) = p(W,Y|t) = p(W|Y,t)p(Y|t)$

    将上式分为两个部分: P(W|Y,t)和P(Y|t)分别称为weight computation model和neighbor selection model.

    Present work:

    Neighbor Selection Model: 1) 忽略空间相邻batch的限制,单独考虑每个 text patch 2) 考虑空间相邻的batch限制

    Weigth Computation Model: 1) 忽略空间相邻batch的限制,单独考虑每个 text patch 2) 考虑空间相邻的batch限制

    MRF is mainly for neighbor selection and MWF is mainly for weight computation.

    Bayesian face sketch synthesis:

  • 相关阅读:
    Path expected for join!错误处理
    JPA 不生成外键
    SpringDataJPA
    MyCat-schema.xml详解
    aliyun阿里云Maven仓库地址——加速你的maven构建
    MyCAT简易入门 (Linux)
    CentOS 7 常用命令大全
    mycat 9066管理端口
    MyCat入门
    Virtualbox的centos7 nat和桥接网络配置
  • 原文地址:https://www.cnblogs.com/vincentcheng/p/7264128.html
Copyright © 2011-2022 走看看