zoukankan      html  css  js  c++  java
  • 【Paper Reading】Bayesian Face Sketch Synthesis

    Contribution: 1) Systematic interpretation to existing face sketch synthesis methods. 2) Bayesian face sketch synthesis: apply the spatial neighboring constraint to both the neighbor selection model and the wieght computation model.

    Problem:

    s代表target patch, t代表test patch,$X_i = {x_k^i}_{k=1}^K和Y_i = {x_k^i}_{k=1}^K$分别为 test patch 的K个最近邻photo patches和sketch patches. target patch 由下面公式计算得到:

    $$s_i  = Y_i cdot w_i = sum_{k=1}^K w_{ik}y_k.$$

    给定test patch生成target patch,等价于最大后验概率$p(s|t) = p(s_1,...,s_N|t_1,...,t_N) = p(W,Y|t) = p(W|Y,t)p(Y|t)$

    将上式分为两个部分: P(W|Y,t)和P(Y|t)分别称为weight computation model和neighbor selection model.

    Present work:

    Neighbor Selection Model: 1) 忽略空间相邻batch的限制,单独考虑每个 text patch 2) 考虑空间相邻的batch限制

    Weigth Computation Model: 1) 忽略空间相邻batch的限制,单独考虑每个 text patch 2) 考虑空间相邻的batch限制

    MRF is mainly for neighbor selection and MWF is mainly for weight computation.

    Bayesian face sketch synthesis:

  • 相关阅读:
    诸暨集训游记
    P2678 跳石头
    P1577 切绳子
    P1328 生活大爆炸版石头剪刀布
    P1067 多项式输出
    分解因数
    【管理篇】团队组织与架构演进方法论
    【状态机】行为状体机和协议状态机
    【数据库】分库分表
    【OLAP】从数仓到Kappa架构
  • 原文地址:https://www.cnblogs.com/vincentcheng/p/7264128.html
Copyright © 2011-2022 走看看