zoukankan      html  css  js  c++  java
  • [LeetCode] Same Tree

    Given two binary trees, write a function to check if they are equal or not.

    Two binary trees are considered equal if they are structurally identical and the nodes have the same value.

    思路一:前序递归的思想。时间复杂度O(n),空间复杂度O(logN)

      

     1 /**
     2  * Definition for binary tree
     3  * struct TreeNode {
     4  *     int val;
     5  *     TreeNode *left;
     6  *     TreeNode *right;
     7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     8  * };
     9  */
    10 class Solution {
    11 public:
    12     bool isSameTree(TreeNode *p, TreeNode *q) {
    13         if (!p && !q) return true;
    14         if (!p || !q ) return false;
    15         
    16         return (p->val == q->val) && isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
    17     }
    18 };

    思路二:层次遍历的思想。时间复杂度O(n), 空间复杂度O(logN)

      

     1 /**
     2  * Definition for binary tree
     3  * struct TreeNode {
     4  *     int val;
     5  *     TreeNode *left;
     6  *     TreeNode *right;
     7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     8  * };
     9  */
    10 class Solution {
    11 public:
    12     bool isSameTree(TreeNode *p, TreeNode *q) {
    13         queue<TreeNode *> s;
    14         s.push(p);
    15         s.push(q);
    16         
    17         while (!s.empty()) {
    18             p = s.front();
    19             s.pop();
    20             q = s.front();
    21             s.pop();
    22             if (!p && !q) continue;
    23             if (!p || !q) return false;
    24             if (p->val != q->val) return false;
    25             
    26             s.push(p->left);
    27             s.push(q->left);
    28             s.push(p->right);
    29             s.push(q->right);
    30         }
    31         
    32         return true;
    33     }
    34 };
  • 相关阅读:
    工具类官网Web原型制作分享-Adobe
    还在为黑白网页设计犯难?12款设计帮你轻松解决!!!
    联系我们吧
    单调栈&&单调队列
    *模板--数据结构
    非递归线段树专题
    反素数
    线段树专题训练
    BST
    排列与组合
  • 原文地址:https://www.cnblogs.com/vincently/p/4232467.html
Copyright © 2011-2022 走看看